内容简介:当初Kubernetes网络的设计目标是按照这样的要求,集群中的每个pod都在一个平坦的、共享网络命名空间中,并且每个Pod都拥有一个IP,通信时无需端口映射。 用户也需要额外考虑如何建立Pod之间的连接,也不需要考虑将容器端口映射到主机端口等问题。基于这些要求而实现的k8s pod网络模型,将具有向后兼容的特性,可以使得Pod从某些角度上可以被看成是一个传统的物理主机或vm来对待。在
当初Kubernetes网络的设计目标是 使得开发者使用pod时在网络这一层面可以像使用传统物理主机或虚拟机一样 。具体的基本要求如下:
- 所有pod间均应可以在无需NAT的情况下直接通信;
- 所有集群节点与所有集群的Pod之间均应可以在无需NAT的情况下直接通信;
- 容器自身的地址和其他pod看到的它的地址是同一个地址;
按照这样的要求,集群中的每个pod都在一个平坦的、共享网络命名空间中,并且每个Pod都拥有一个IP,通信时无需端口映射。 用户也需要额外考虑如何建立Pod之间的连接,也不需要考虑将容器端口映射到主机端口等问题。基于这些要求而实现的k8s pod网络模型,将具有向后兼容的特性,可以使得Pod从某些角度上可以被看成是一个传统的物理主机或vm来对待。
在 《使用nomad实现集群管理和微服务部署调度》 一文中,我们看到nomad部署调度的driver为 docker 的服务实例都是通过主机和容器间的端口映射来对外提供服务的。服务实例多的时候,大量服务端口出现在眼前,我们很难用端口判断这是什么服务。并且通过映射端口暴露服务有局限,对于那些需要映射到主机固定端口的服务来说,很可能存在与其他服务的端口冲突而导致部署失败。除此之外,这种端口映射的方式还缺少隔离的作用,所有实例暴露的端口在同一个全局网络空间。
nomad是否可以像k8s一样将服务实例部署到overlay网络中从而实现每个服务实例所在container可以被看成一个独立的vm;并且我们还可以通过划分overlay的网段来隔离,实现某种意义上的“多租户”呢?在本篇文章中,我们来试验一下上述想法是否可行。
一、搭建试验环境
我们这次在一个 VirtualBox 搭建的三节点环境中进行验证。 如果小伙伴对这段很熟悉,或者有现成的环境可用,那么可以跳过这一小节 。另外这节不是重点,我不会对这个过程用过多文字做解释。
1. 创建虚机,组建网络
我们在一台ubuntu 18.04 desktop版本主机上搭建环境,所使用的软件版本信息如下:
-
VirtualBox: 5.2.18
-
Guest OS: Ubuntu 16.04.6 LTS (GNU/Linux 4.4.0-142-generic x86_64)
组件环境的虚拟机和网络拓扑示意图如下:
如上图所示:三个vm 通过连入host-only网络(vboxnet0)实现内网通;通过连入NAT网络(NatNetwork)实现外网通。(怪异:在windows上的virtualbox实际上通过natnetwork即可实现全通的,无需host-only network,但是在ubuntu下居然不行)。
每个vm中网络配置如下:
# cat /etc/network/interfaces # This file describes the network interfaces available on your system # and how to activate them. For more information, see interfaces(5). source /etc/network/interfaces.d/* # The loopback network interface auto lo iface lo inet loopback # The primary network interface auto enp0s3 iface enp0s3 inet dhcp auto enp0s8 iface enp0s8 inet dhcp
保存后,执行/etc/init.d/networking restart生效。
另外每个vm上安装了openssh-server(apt install openssh-server)并设置root可登陆。三个vm的主机名分为为u1、u2和u3(可通过hostnamectl –static set-hostname u1设置。并在/etc/hosts中添加主机名和内网IP的对应关系)。
每台主机上安装了docker引擎(通过apt install docker.io安装),docker版本信息如下:
# docker version Client: Version: 18.09.2 API version: 1.39 Go version: go1.10.4 Git commit: 6247962 Built: Tue Feb 26 23:56:24 2019 OS/Arch: linux/amd64 Experimental: false Server: Engine: Version: 18.09.2 API version: 1.39 (minimum version 1.12) Go version: go1.10.4 Git commit: 6247962 Built: Tue Feb 12 22:47:29 2019 OS/Arch: linux/amd64 Experimental: false
二、使用weave创建跨节点的overlay network
我们选择 weave 作为overlay network的实现。
1. 安装weave
我们在每个vm节点上安装目前最新版本的weave,以一个节点为例:
# curl -L git.io/weave -o /usr/local/bin/weave % Total % Received % Xferd Average Speed Time Time Time Current Dload Upload Total Spent Left Speed 0 0 0 0 0 0 0 0 --:--:-- 0:00:01 --:--:-- 0 0 0 0 0 0 0 0 0 --:--:-- 0:00:02 --:--:-- 0 100 595 0 595 0 0 62 0 --:--:-- 0:00:09 --:--:-- 137 100 52227 100 52227 0 0 4106 0 0:00:12 0:00:12 --:--:-- 21187 # chmod a+x /usr/local/bin/weave # weave version weave script 2.5.1 ... ...
通过weave setup预先将weave相关的容器Image下载到各个节点,为后面的weave launch所使用。
# weave setup 2.5.1: Pulling from weaveworks/weave ... ... c458f7a37ca6: Pull complete Digest: sha256:a170dd93fa7e678cc37919ffd65601d1015da6c3f10878534ac237381ea0db19 Status: Downloaded newer image for weaveworks/weave:2.5.1 2.5.1: Pulling from weaveworks/weaveexec ... ... c11f30d06b58: Pull complete Digest: sha256:ad53aaabf648548ec26cceac3ab49394778322e1623f0d184a2b74ad06338087 Status: Downloaded newer image for weaveworks/weaveexec:2.5.1 latest: Pulling from weaveworks/weavedb 9b0681f946a1: Pull complete Digest: sha256:c280cf4e7208f4ca0d2514539e0f476dd12db70beacdc368793b7736de023d8d Status: Downloaded newer image for weaveworks/weavedb:latest
2. 启动跨多节点(peer) weave network
weave的一个优点是建立跨节点overlay network时并不需要一个外部的存储(比如etcd),位于多个节点上的weave进程会自动同步相关信息。而且weave支持动态向weave overlay network中添加节点。
我们来初始化这个由三个vm节点构成的weave overlay network:
root@u1:~# weave launch --no-dns 192.168.56.4 192.168.56.5 78f459a4a8acc07d46c1f86a15a519b91978c809876452b9d9c1294e760394a9 root@u2:~# weave launch --no-dns 192.168.56.3 192.168.56.5 1f379e50f3917e05bd133589f75594d7b2da20a680bb1e5e7172e37a18abe3ff root@u3:~# weave launch --no-dns 192.168.56.3 192.168.56.4 aa600bfad8db8711e2cbc5f8e127022460ca3738226dd7aa33bb5b9b049f8cee
执行完上面命令后,在任意一个vm节点上执行下面命令,查看节点weave之间的连接状态:
root@u1:~# weave status connections <- 192.168.56.4:54715 established fastdp 8e:d8:ad:a8:32:eb(u2) mtu=1376 <- 192.168.56.5:51504 established fastdp f6:58:43:5c:68:d7(u3) mtu=1376
我们看到u1节点已经和u2、u3节点成功建立了连接,weave的工作模式是fastdp(fast data path),mtu为默认的1376( 适当调节weave mtu可以提升weave overlay network的网络性能 )。
我们也可以通过weave status命令查看一下weave网络的整体状态:
# weave status Version: 2.5.1 (up to date; next check at 2019/04/18 12:35:41) Service: router Protocol: weave 1..2 Name: f6:58:43:5c:68:d7(u3) Encryption: disabled PeerDiscovery: enabled Targets: 3 Connections: 3 (2 established, 1 failed) Peers: 3 (with 6 established connections) TrustedSubnets: none Service: ipam Status: ready Range: 10.32.0.0/12 DefaultSubnet: 10.32.0.0/12 Service: dns Domain: weave.local. Upstream: 10.0.3.3 TTL: 1 Entries: 0 Service: proxy Address: unix:///var/run/weave/weave.sock Service: plugin (legacy) DriverName: weave
3. 在weave overlay network中创建container并测试overlay网内container的互通性
我们通过为docker指定net driver为weave的方式让docker在weave overlay network中创建container:
root@u1:~# docker run -ti --net=weave busybox /bin/sh root@u2:~# docker run -ti --net=weave busybox /bin/sh root@u3:~# docker run -ti --net=weave busybox /bin/sh
我们在u1上启动的容器内去ping位于其他两个vm上启动的新容器:
/ # ping -c 3 10.32.0.1 PING 10.32.0.1 (10.32.0.1): 56 data bytes 64 bytes from 10.32.0.1: seq=0 ttl=64 time=1.540 ms 64 bytes from 10.32.0.1: seq=1 ttl=64 time=1.548 ms 64 bytes from 10.32.0.1: seq=2 ttl=64 time=1.434 ms --- 10.32.0.1 ping statistics --- 3 packets transmitted, 3 packets received, 0% packet loss round-trip min/avg/max = 1.434/1.507/1.548 ms / # ping -c 3 10.46.0.0 PING 10.46.0.0 (10.46.0.0): 56 data bytes 64 bytes from 10.46.0.0: seq=0 ttl=64 time=5.118 ms 64 bytes from 10.46.0.0: seq=1 ttl=64 time=1.608 ms 64 bytes from 10.46.0.0: seq=2 ttl=64 time=1.837 ms --- 10.46.0.0 ping statistics --- 3 packets transmitted, 3 packets received, 0% packet loss round-trip min/avg/max = 1.608/2.854/5.118 ms
我们看到位于weave overlay network中的三个容器是连通的。
4. 测试host到weave overlay网络中容器的连通性
考虑到后续host上的consul会对部署在weave overlay network中的container中的服务做health check,因此需要在host上能连通位于overlay network中的container。
我们来测试一下:
root@u1:~# docker run -ti --net=weave busybox /bin/sh / # ip a 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue qlen 1 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 inet 127.0.0.1/8 scope host lo valid_lft forever preferred_lft forever 29: ethwe0@if30: <BROADCAST,MULTICAST,UP,LOWER_UP,M-DOWN> mtu 1376 qdisc noqueue link/ether aa:8f:45:8f:5f:d6 brd ff:ff:ff:ff:ff:ff inet 10.40.0.0/12 brd 10.47.255.255 scope global ethwe0 valid_lft forever preferred_lft forever 31: eth0@if32: <BROADCAST,MULTICAST,UP,LOWER_UP,M-DOWN> mtu 1500 qdisc noqueue link/ether 02:42:ac:12:00:02 brd ff:ff:ff:ff:ff:ff inet 172.18.0.2/16 brd 172.18.255.255 scope global eth0 valid_lft forever preferred_lft forever root@u1:~# ping 10.40.0.0 PING 10.40.0.0 (10.40.0.0) 56(84) bytes of data. ^C --- 10.40.0.0 ping statistics --- 4 packets transmitted, 0 received, 100% packet loss, time 3024ms
从测试结果来看,在host无法ping通位于weave network上的container。这个问题实则也显而易见,因为当前host上的路由表中没有以weave网络range: 10.32.0.0/12为目的地址的路由,并且weave网络设备也并未启用ip地址:
root@u1:~# ip route default via 10.0.3.2 dev enp0s8 10.0.3.0/24 dev enp0s8 proto kernel scope link src 10.0.3.15 172.17.0.0/16 dev docker0 proto kernel scope link src 172.17.0.1 172.18.0.0/16 dev docker_gwbridge proto kernel scope link src 172.18.0.1 192.168.56.0/24 dev enp0s3 proto kernel scope link src 192.168.56.3
关于这个问题,weave官方给出了 答案 :我们可以通过weave expose命令自动为主机上的weave设备分配ip地址,添加到10.32.0.0/12的路由。
root@u1:~# weave expose 10.40.0.1 root@u1:~# ip a .... ... 7: weave: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1376 qdisc noqueue state UP group default qlen 1000 link/ether b2:97:b5:7b:0f:a9 brd ff:ff:ff:ff:ff:ff inet 10.40.0.1/12 brd 10.47.255.255 scope global weave valid_lft forever preferred_lft forever inet6 fe80::b097:b5ff:fe7b:fa9/64 scope link valid_lft forever preferred_lft forever .... ... root@u1:~# ip route default via 10.0.3.2 dev enp0s8 10.0.3.0/24 dev enp0s8 proto kernel scope link src 10.0.3.15 10.32.0.0/12 dev weave proto kernel scope link src 10.40.0.1 172.17.0.0/16 dev docker0 proto kernel scope link src 172.17.0.1 172.18.0.0/16 dev docker_gwbridge proto kernel scope link src 172.18.0.1 192.168.56.0/24 dev enp0s3 proto kernel scope link src 192.168.56.3
我们看到在u1节点上执行完expose之后,weave设备拥有了自己的ip地址,并且主机路由表中也增加了10.32.0.0/12网络的路由。我们再来测试一下u1上主机到container是否通了:
root@u1:~# ping 10.40.0.0 PING 10.40.0.0 (10.40.0.0) 56(84) bytes of data. 64 bytes from 10.40.0.0: icmp_seq=1 ttl=64 time=4.42 ms 64 bytes from 10.40.0.0: icmp_seq=2 ttl=64 time=1.04 ms 64 bytes from 10.40.0.0: icmp_seq=3 ttl=64 time=1.21 ms ^C --- 10.40.0.0 ping statistics --- 3 packets transmitted, 3 received, 0% packet loss, time 2003ms rtt min/avg/max/mdev = 1.048/2.228/4.425/1.554 ms
网络已经打通。我们继续在u2、u3两个节点上执行weave expose,这样三台主机都可以通过网络reach到位于任何一台主机上的、weave network中的container。
而从container到host,原本就可以访问,以u1上的container为例:
/ # ping 192.168.56.3 PING 192.168.56.3 (192.168.56.3): 56 data bytes 64 bytes from 192.168.56.3: seq=0 ttl=64 time=0.345 ms ^C --- 192.168.56.3 ping statistics --- 1 packets transmitted, 1 packets received, 0% packet loss round-trip min/avg/max = 0.345/0.345/0.345 ms / # ping 192.168.56.4 PING 192.168.56.4 (192.168.56.4): 56 data bytes 64 bytes from 192.168.56.4: seq=0 ttl=63 time=1.277 ms ^C --- 192.168.56.4 ping statistics --- 1 packets transmitted, 1 packets received, 0% packet loss round-trip min/avg/max = 1.277/1.277/1.277 ms
三、安装consul和nomad集群
在 《使用nomad实现集群管理和微服务部署调度》 一文中,我们已经详细说过consul和nomad的安装配置过程,这里仅列出步骤,不再详细说明。已经有环境的朋友可以略过该步骤!
1. 安装consul
在每个节点上执行下面步骤安装:
# wget -c https://releases.hashicorp.com/consul/1.4.4/consul_1.4.4_linux_amd64.zip # unzip consul_1.4.4_linux_amd64.zip # mv consul /usr/local/bin # mkdir -p ~/consul-install/consul-data
启动consul集群:
u1: # nohup consul agent -server -ui -dns-port=53 -bootstrap-expect=3 -data-dir=/root/consul-install/consul-data -node=consul-1 -client=0.0.0.0 -bind=192.168.56.3 -datacenter=dc1 > consul-1.log & 2>&1 u2: # nohup consul agent -server -ui -dns-port=53 -bootstrap-expect=3 -data-dir=/root/consul-install/consul-data -node=consul-2 -client=0.0.0.0 -bind=192.168.56.4 -datacenter=dc1 -join 192.168.56.3 > consul-2.log & 2>&1 u3: nohup consul agent -server -ui -dns-port=53 -bootstrap-expect=3 -data-dir=/root/consul-install/consul-data -node=consul-3 -client=0.0.0.0 -bind=192.168.56.5 -datacenter=dc1 -join 192.168.56.3 > consul-3.log & 2>&1
查看启动状态:
# consul operator raft list-peers Node ID Address State Voter RaftProtocol consul-1 db838e7c-2b02-949b-763b-a6646ee51981 192.168.56.3:8300 leader true 3 consul-2 33c81139-5054-7e76-f320-7d28d7528cc8 192.168.56.4:8300 follower true 3 consul-3 4eda7d24-3fe2-45f5-f4ad-b95fa39f13c1 192.168.56.5:8300 follower true 3
如果输出类似上面的日志,则说明consul集群启动成功!
接下来为了利用consul内嵌的DNS server,我们修改一下各个node的DNS配置 /etc/resolvconf/resolv.conf.d/base:
// /etc/resolvconf/resolv.conf.d/base nameserver 192.168.56.3 nameserver 192.168.56.4 options timeout:2 attempts:3 rotate single-request-reopen # /etc/init.d/resolvconf restart [ ok ] Restarting resolvconf (via systemctl): resolvconf.service.
2. 安装nomad并启动nomad集群
下面是在每个node上安装nomad的步骤:
# wget -c https://releases.hashicorp.com/nomad/0.8.7/nomad_0.8.7_linux_amd64.zip # mkdir nomad-install # unzip nomad_0.8.7_linux_amd64.zip # mv nomad /usr/local/bin # nomad version Nomad v0.8.7 (21a2d93eecf018ad2209a5eab6aae6c359267933+CHANGES)
在每个node上创建agent.hcl文件,放到nomad-install下面:
// agent.hcl data_dir = "/root/nomad-install/nomad.d" bind_addr = "192.168.56.3" //node 内网ip,这里以u1 host为例 server { enabled = true bootstrap_expect = 3 } client { enabled = true }
启动集群(基于consul):
u1: # nohup nomad agent -config=/root/nomad-install/agent.hcl > nomad-1.log & 2>&1 u2: # nohup nomad agent -config=/root/nomad-install/agent.hcl > nomad-2.log & 2>&1 u3: # nohup nomad agent -config=/root/nomad-install/agent.hcl > nomad-3.log & 2>&1
查看nomad集群状态:
# nomad server members -address="http://192.168.56.3:4646" Name Address Port Status Leader Protocol Build Datacenter Region u1.global 192.168.56.3 4648 alive false 2 0.8.7 dc1 global u2.global 192.168.56.4 4648 alive true 2 0.8.7 dc1 global u3.global 192.168.56.5 4648 alive false 2 0.8.7 dc1 global # nomad operator raft list-peers -address="http://192.168.56.3:4646" Node ID Address State Voter RaftProtocol u3.global 192.168.56.5:4647 192.168.56.5:4647 follower true 2 u2.global 192.168.56.4:4647 192.168.56.4:4647 leader true 2 u1.global 192.168.56.3:4647 192.168.56.3:4647 follower true 2
nomad集群启动成功!
四. nomad实现在weave overlay network中的job部署
1. 创建位于weave overlay network中的nomad task service实例
我们定义如下nomad job的配置文件:
//httpbackend.nomad job "httpbackend" { datacenters = ["dc1"] type = "service" group "httpbackend" { count = 3 task "httpbackend" { driver = "docker" config { image = "bigwhite/httpbackendservice:v1.0.0" dns_servers = ["192.168.56.3", "192.168.56.4", "192.168.56.5"] network_mode = "weave" logging { type = "json-file" } } resources { network { mbits = 10 } } service { name = "httpbackend" } } } }
与之前文章中job的配置文件不同的是,该job配置在task的config中增加了:
-
dns_servers:由于docker 18.09在-net=weave下,container没有继承host的/etc/resolv.conf文件,我们为了能在container中通过服务的domain查询到其真实ip地址,我们在docker的执行参数中加入dns_servers,我们将u1,u2,u3都作为dns server提供了。
-
network_node:我们希望nomad调度负载、创建docker容器时将docker container创建在weave network中,因此我们在network_node中传入”weave”,这就相当于在执行docker时执行:docker run … –net=weave … …
我们来创建一下该job:
# nomad job run -address=http://192.168.56.3:4646 httpbackend.nomad ==> Monitoring evaluation "806eaecf" Evaluation triggered by job "httpbackend" Allocation "6e06be74" created: node "11212ed9", group "httpbackend" Allocation "e7ed8569" created: node "aa5a06fe", group "httpbackend" Allocation "fd6c6a05" created: node "fe7a7e9c", group "httpbackend" Evaluation status changed: "pending" -> "complete" ==> Evaluation "806eaecf" finished with status "complete" # nomad job status -address=http://192.168.56.3:4646 httpbackend ID = httpbackend Name = httpbackend Submit Date = 2019-04-19T13:18:21+08:00 Type = service Priority = 50 Datacenters = dc1 Status = running Periodic = false Parameterized = false Summary Task Group Queued Starting Running Failed Complete Lost httpbackend 0 0 3 0 0 0 Allocations ID Node ID Task Group Version Desired Status Created Modified 6e06be74 11212ed9 httpbackend 0 run running 54s ago 7s ago e7ed8569 aa5a06fe httpbackend 0 run running 54s ago 6s ago fd6c6a05 fe7a7e9c httpbackend 0 run running 54s ago 12s ago
我们查看一下u1节点上的httpbackend负载的状态和ip:
root@u1:~/nomad-install/jobs# docker ps CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES 2e2229cf8f64 c196c122feea "/root/httpbackendse…" 49 seconds ago Up 48 seconds httpbackend-e7ed8569-fdde-537b-91b3-84583d1ea238 912ac43350f7 weaveworks/weave:2.5.1 "/home/weave/weaver …" 22 hours ago Up 22 hours weave root@u1:~/nomad-install/jobs# docker exec 2e2229cf8f64 ip a ... ... 49: ethwe0@if50: <BROADCAST,MULTICAST,UP,LOWER_UP,M-DOWN> mtu 1376 qdisc noqueue link/ether a2:f1:ef:d7:89:ee brd ff:ff:ff:ff:ff:ff inet 10.40.0.0/12 brd 10.47.255.255 scope global ethwe0 valid_lft forever preferred_lft forever .... ...
我们看到新创建的container的ip为10.40.0.0,是weave network subnet range中的一个地址。
我们访问一下该服务:
# curl http://10.40.0.0:8081 this is httpbackendservice, version: v1.0.0
我们看到了预期返回的结果。通过consul的域名访问也同样ok:
# curl httpbackend.service.dc1.consul:8081 this is httpbackendservice, version: v1.0.0
我们从一个位于weave network中的container中去访问httpbackend服务,依然会得到正确的应答结果:
# docker run -ti --net=weave --dns=192.168.56.3 --dns=8.8.8.8 ubuntu /bin/bash root@3fe76a39b66f:/# curl httpbackend.service.dc1.consul:8081 this is httpbackendservice, version: v1.0.0
五、 应用隔离
有些时候我们需要将部署的应用之间做隔离,让彼此无法互相访问。weave overlay network是支持这样做的,我们一起来看一下。
1.重建weave网络
我们首先需要重新创建weave网络,使之能支持划分不同subnet。
先在每个node上执行下面命令,将原有的weave网络清理干净:
# weave reset
执行后,发现weave网络设备、weave相关容器、路由表中有关weave的路由都不见了。
我们重新建立三节点的weave网络,在这个10.32.0.0/16的大网中,我们划分若干subnet,默认的subnet为10.32.0.0/24。
u1: # weave launch --no-dns --ipalloc-range 10.32.0.0/16 --ipalloc-default-subnet 10.32.0.0/24 192.168.56.4 192.168.56.5 # weave expose u2: # weave launch --no-dns --ipalloc-range 10.32.0.0/16 --ipalloc-default-subnet 10.32.0.0/24 192.168.56.3 192.168.56.5 # weave expose u3: # weave launch --no-dns --ipalloc-range 10.32.0.0/16 --ipalloc-default-subnet 10.32.0.0/24 192.168.56.3 192.168.56.4 # weave expose
接下来我们在不同的subnet下分别建立两个container:
首先在u1上,在default subnet下建立两个container a1和a2:
#docker run -ti --net=weave --dns=192.168.56.3 --dns=8.8.8.8 --name a1 busybox /bin/sh #docker run -ti --net=weave --dns=192.168.56.3 --dns=8.8.8.8 --name a2 busybox /bin/sh
再在u2上在subnet 10.32.1.0/24下建立两个container:b1和b2
u2上: # docker run -ti --net=weave --dns=192.168.56.3 --dns=8.8.8.8 -e WEAVE_CIDR=net:10.32.1.0/24 --name b1 busybox /bin/sh # docker run -ti --net=weave --dns=192.168.56.3 --dns=8.8.8.8 -e WEAVE_CIDR=net:10.32.1.0/24 --name b2 busybox /bin/sh
我们经过测试发现:a1与a2、a1与b1都是可以ping通的,这与我们的预期a1与b1、b2不通不符。我们发现b1(10.32.0.2)、b2(10.32.0.3)两个容器的ip地址居然依然在default subnet内,似乎通过环境变量WEAVE_CIDR传递的subnet信息没有生效。
在weave的一个 issue 中,有开发者提到:WEAVE_CIDR仅用于weave proxy模式,在weave作为plugin模式工作时,docker不会将该环境变量信息传递给weave。也就是说即便上面在u2上创建b1、b2时设置了环境变量WEAVE_CIDR,weave插件也无法得到该信息,于是依旧在默认subnet范围为b1、b2分配了ip。
2. 让docker使用weave proxy模式
weave proxy是位于docker client与docker engine(docker daemon)之间的代理服务:
docker client --> weave proxy ---> docker engine/daemon
默认情况下,/var/run/docker.sock是docker client和docker engine之间的通信“媒介”,Docker daemon默认监听的Unix域套接字(Unix domain socket):/var/run/docker.sock,docker client以及容器中的进程可以通过它与Docker daemon进行通信。
我们可通过docker -H xxx.sock或通过设置 DOCKER_HOST环境变量的方式让docker client与传入的unix socket通信。这样我们就可以将weave proxy的套接字unix:///var/run/weave/weave.sock(通过weave env查看到)传给docker client了。我们来测试一下:
u1: # docker -H unix:///var/run/weave/weave.sock run -ti --dns=192.168.56.3 --dns=8.8.8.8 --name a1 busybox /bin/sh # docker -H unix:///var/run/weave/weave.sock run -ti --dns=192.168.56.3 --dns=8.8.8.8 --name a2 busybox /bin/sh u2: # docker -H unix:///var/run/weave/weave.sock run -ti --dns=192.168.56.3 --dns=8.8.8.8 -e WEAVE_CIDR=net:10.32.1.0/24 --name b1 busybox /bin/sh #docker -H unix:///var/run/weave/weave.sock run -ti --dns=192.168.56.3 --dns=8.8.8.8 -e WEAVE_CIDR=net:10.32.1.0/24 --name b2 busybox /bin/sh
四个container启动后,我们发现b1、b2的ip地址都在WEAVE_CIDR指定的空间内,a1、a2间互通;b1、b2间互通,但a1、a2与b1、b2间是不通的。这样就与预期相符了。
3. nomad与weave proxy模式集成实现应用工作负载的隔离
接下来,我们来看看如何将nomad和weave的proxy模式集成在一起,实现工作负载分配在不同subnet。
这里我们就无法仅仅通过在job配置文件中传入参数的方式来实现了,我们需要修改一下agent.hcl并重启nomad集群。以u1节点上的agent.hcl为例,我们需要改为下面这样:
data_dir = "/root/nomad-install/nomad.d" bind_addr = "192.168.56.5" server { enabled = true bootstrap_expect = 3 } client { enabled = true "options":{ "docker.endpoint":"unix://var/run/weave/weave.sock" } }
我们在client配置block中增加一个options,设置了docker.endpoint为weave proxy监听的weave.sock。重启集群:
u1: # nohup nomad agent -config=/root/nomad-install/agent.hcl > nomad-1.log & 2>&1 u2: # nohup nomad agent -config=/root/nomad-install/agent.hcl > nomad-2.log & 2>&1 u3: # nohup nomad agent -config=/root/nomad-install/agent.hcl > nomad-3.log & 2>&1
接下来,我们重建一个httpbackend-another-subnet.nomad,内容如下:
//httpbackend-another-subnet.nomad job "httpbackend" { datacenters = ["dc1"] type = "service" group "httpbackend" { count = 3 task "httpbackend" { driver = "docker" config { image = "bigwhite/httpbackendservice:v1.0.0" dns_servers = ["192.168.56.3", "192.168.56.4", "192.168.56.5"] logging { type = "json-file" } } env { WEAVE_CIDR="net:10.32.1.0/24" } resources { network { mbits = 10 } } service { name = "httpbackend" } } } }
我们去掉了network_mode = “weave”,增加了一个env:WEAVE_CIDR=”net:10.32.1.0/24″。run这个job:
# nomad job run -address=http://192.168.56.3:4646 httpbackend-another-subnet.nomad ==> Monitoring evaluation "e94bdd00" Evaluation triggered by job "httpbackend" Allocation "3f5032b5" created: node "11212ed9", group "httpbackend" Allocation "40d75ae8" created: node "aa5a06fe", group "httpbackend" Allocation "627fe1e7" created: node "fe7a7e9c", group "httpbackend" Evaluation status changed: "pending" -> "complete" ==> Evaluation "e94bdd00" finished with status "complete" # docker ps CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES 700bbea7c89e c196c122feea "/w/w /root/httpback…" 17 seconds ago Up 16 seconds httpbackend-40d75ae8-fe75-c560-b87b-c1272db4850c 8b7e29522b8b weaveworks/weave:2.5.1 "/home/weave/weaver …" 10 hours ago Up 10 hours weave root@u1:~/nomad-install/jobs# docker exec 700bbea7c89e ip a 1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue qlen 1 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00 inet 127.0.0.1/8 scope host lo valid_lft forever preferred_lft forever 142: eth0@if143: <BROADCAST,MULTICAST,UP,LOWER_UP,M-DOWN> mtu 1500 qdisc noqueue link/ether 02:42:ac:11:00:02 brd ff:ff:ff:ff:ff:ff inet 172.17.0.2/16 brd 172.17.255.255 scope global eth0 valid_lft forever preferred_lft forever 144: ethwe@if145: <BROADCAST,MULTICAST,UP,LOWER_UP,M-DOWN> mtu 1376 qdisc noqueue link/ether f2:55:9d:26:72:56 brd ff:ff:ff:ff:ff:ff inet 10.32.1.192/24 brd 10.32.1.255 scope global ethwe valid_lft forever preferred_lft forever
我们看到新创建的httpbackend container的ip已经分配到10.32.1.0/24 subnet下面了。这种方式使得我们可以任意安排我们的job放入哪个subnet。
4. 遗留问题
我们通过consul go api试图从consul中获取service: httpbackend的ip信息,我们得到了如下的输出:
# ./services 10.0.3.15 : 0 10.0.3.15 : 0 10.0.3.15 : 0 []
如果在httpbackend的service配置中使用如下配置:
service { name = "httpbackend" address_mode = "driver" }
那么,我们得到的是下面结果:
# ./services 172.17.0.3 : 0 172.17.0.2 : 0 172.17.0.2 : 0 []
也就是说nomad在consul中记录的container的advertise ip不是我们想要的weave subnet网段的ip信息,这样就会导致我们通过consul的DNS服务或者通过consul api获取的服务ip信息有误,导致无法通过这两种方式访问到服务实例。在nomad的最新版v0.9.0中该问题依然存在。
综上,“隔离”的目的得到了部分满足,期待后续nomad的改进。
六、参考资料
-
https://www.weave.works/docs/net/latest/install/installing-weave/
-
https://www.weave.works/docs/net/latest/install/using-weave/#peer-connections
-
https://www.weave.works/docs/net/latest/install/plugin/plugin/#launching
-
https://www.weave.works/docs/net/latest/tasks/manage/host-network-integration/
-
https://docs.docker.com/v17.09/engine/userguide/networking/configure-dns/
-
https://www.nomadproject.io/docs/drivers/docker.html#client-requirements
-
https://www.weave.works/docs/net/latest/tasks/manage/application-isolation/
-
https://www.weave.works/docs/net/latest/tasks/weave-docker-api/weave-docker-api/
-
https://www.nomadproject.io/docs/drivers/docker.html
-
https://www.nomadproject.io/docs/configuration/client.html
-
https://www.nomadproject.io/docs/job-specification/service.html#using-driver-address-mode
-
https://success.docker.com/article/networking
本文涉及到的配置文件和源码,参见 这里 。
我的网课“ Kubernetes实战:高可用集群搭建、配置、运维与应用 ”在慕课网上线了,感谢小伙伴们学习支持!
我爱发短信 :企业级短信平台定制开发专家 https://51smspush.com/
smspush : 可部署在企业内部的定制化短信平台,三网覆盖,不惧大并发接入,可定制扩展; 短信内容你来定,不再受约束, 接口丰富,支持长短信,签名可选。
著名云主机服务厂商DigitalOcean发布最新的主机计划,入门级Droplet配置升级为:1 core CPU、1G内存、25G高速SSD,价格5$/月。有使用DigitalOcean需求的朋友,可以打开这个 链接地址 :https://m.do.co/c/bff6eed92687 开启你的DO主机之路。
我的联系方式:
微博:https://weibo.com/bigwhite20xx
微信公众号:iamtonybai
博客:tonybai.com
github: https://github.com/bigwhite
微信赞赏:
商务合作方式:撰稿、出书、培训、在线课程、合伙创业、咨询、广告合作。
© 2019,bigwhite. 版权所有.
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网
猜你喜欢:- 高可用负载均衡集群之 HAProxy 部署
- 利用saltstack一键部署高可用负载均衡集群
- LEDE/Openwrt上部署Haproxy对Shadowsocks进行负载均衡
- 超长干货!在裸机上配置高可用 K3s,部署生产就绪工作负载
- 3分钟了解负载均衡,分清二层负载均衡和三层负载均衡
- 负载均衡策略之有限负载一致性哈希
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。