Kafka从上手到实践-Kafka集群:启动Kafka集群

栏目: 后端 · 发布时间: 5年前

内容简介:这一章节来真正启动Kafka集群,先给出一份Broker的配置项列表,将以下信息复制三份,分别配置三台阿里云ECS上的Broker配置文件:以上列表有两点需要修改的地方:然后使用如下命令分别启动Kafka Broker:

这一章节来真正启动Kafka集群,先给出一份Broker的配置项列表,将以下信息复制三份,分别配置三台阿里云ECS上的Broker配置文件:

############################# Server Basics #############################
broker.id=0
delete.topic.enable=true
auto.create.topics.enable=true

############################# Socket Server Settings #############################
listeners=EXTERNAL://阿里云ECS内网IP:9092,INTERNAL://阿里云ECS内网IP:9093
listener.security.protocol.map=EXTERNAL:PLAINTEXT,INTERNAL:PLAINTEXT
inter.broker.listener.name=INTERNAL
advertised.listeners=EXTERNAL://阿里云ECS外网IP:9092,INTERNAL://阿里云ECS内网IP:9093
num.network.threads=3
num.io.threads=8
socket.send.buffer.bytes=102400
socket.receive.buffer.bytes=102400
socket.request.max.bytes=104857600

############################# Log Basics #############################
log.dirs=/root/kafka_2.12-2.0.0/data/kafka
num.partitions=1
num.recovery.threads.per.data.dir=1
default.replication.factor=3
min.insync.replicas=2
offsets.topic.replication.factor=2
transaction.state.log.replication.factor=1
transaction.state.log.min.isr=1

############################# Log Retention Policy #############################
log.retention.hours=168
log.segment.bytes=1073741824
log.retention.check.interval.ms=300000
log.segment.ms=604800000

############################# Zookeeper #############################
zookeeper.connect=zookeeper.server.1:2181,zookeeper.server.2:2181,zookeeper.server.3:2181
zookeeper.connection.timeout.ms=6000

############################# Group Coordinator Settings #############################
group.initial.rebalance.delay.ms=0

############################# Message #############################
message.max.bytes=1048576
fetch.message.max.bytes=1048576

以上列表有两点需要修改的地方:

broker.id

然后使用如下命令分别启动Kafka Broker:

kafka_2.12-2.0.0/bin/kafka-server-start.sh kafka_2.12-2.0.0/config/server.properties &

三个Broker没有异常信息,大概率说明我们的Kafka集群部署成功了,下面来验证一下。首先我们创建一个Topic:

kafka_2.12-2.0.0/bin sh kafka-topics.sh --zookeeper zookeeper.server.1:2181 --topic my_topic_in_cluster --create --partitions 3 --replication-factor 2

上面的命令有这样几个信息:

my_topic_in_cluster

如果Kafka集群是成功的,那么理论上这六个Partition会被两两均匀分配到三个Broker中。

连接到部署Broker-0的阿里云ECS,进入Kafka的data目录:

cd /kafka_2.12-2.0.0/data/kafka
/kafka_2.12-2.0.0/data/kafka# ls

__consumer_offsets-0   __consumer_offsets-3   __consumer_offsets-6
__consumer_offsets-1   __consumer_offsets-30  __consumer_offsets-7
__consumer_offsets-10  __consumer_offsets-31  __consumer_offsets-8
__consumer_offsets-11  __consumer_offsets-32  __consumer_offsets-9
__consumer_offsets-12  __consumer_offsets-33  
__consumer_offsets-13  __consumer_offsets-34  
__consumer_offsets-14  __consumer_offsets-35  
__consumer_offsets-15  __consumer_offsets-36  cleaner-offset-checkpoint
__consumer_offsets-16  __consumer_offsets-37  configured-topic-0
__consumer_offsets-17  __consumer_offsets-38  configured-topic-1
__consumer_offsets-18  __consumer_offsets-39  configured-topic-2
__consumer_offsets-19  __consumer_offsets-4   first_topic-0
__consumer_offsets-2   __consumer_offsets-40  first_topic-1
__consumer_offsets-20  __consumer_offsets-41  first_topic-2
__consumer_offsets-21  __consumer_offsets-42  log-start-offset-checkpoint
__consumer_offsets-22  __consumer_offsets-43  meta.properties
__consumer_offsets-23  __consumer_offsets-44  my_topic_in_cluster-0
__consumer_offsets-24  __consumer_offsets-45  my_topic_in_cluster-2
__consumer_offsets-25  __consumer_offsets-46  recovery-point-offset-checkpoint
__consumer_offsets-26  __consumer_offsets-47  replication-offset-checkpoint
__consumer_offsets-27  __consumer_offsets-48  with_keys_topic-0
__consumer_offsets-28  __consumer_offsets-49  with_keys_topic-1
__consumer_offsets-29  __consumer_offsets-5   with_keys_topic-2

可以看到Broker-0中分配了 my_topic_in_cluster 的Partition-0和Partition-2。

同理,连接到部署Broker-1的阿里云ECS,进入Kafka的data目录:

cd /kafka_2.12-2.0.0/data/kafka
/kafka_2.12-2.0.0/data/kafka# ls

meta.properties   my_topic_in_cluster-0
my_topic_in_cluster-1   cleaner-offset-checkpoint    
recovery-point-offset-checkpoint  log-start-offset-checkpoint 
replication-offset-checkpoint

可以看到Broker-1中分配了 my_topic_in_cluster 的Partition-0和Partition-1。

同理,连接到部署Broker-2的阿里云ECS,进入Kafka的data目录:

cd /kafka_2.12-2.0.0/data/kafka
/kafka_2.12-2.0.0/data/kafka# ls

meta.properties   my_topic_in_cluster-1
my_topic_in_cluster-2   cleaner-offset-checkpoint    
recovery-point-offset-checkpoint  log-start-offset-checkpoint 
replication-offset-checkpoint

可以看到Broker-2中分配了 my_topic_in_cluster 的Partition-1和Partition-2。

从上面的结果可以说明我们的Kafka集群是部署成功的。


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Head First Rails

Head First Rails

David Griffiths / O'Reilly Media / 2008-12-30 / USD 49.99

Figure its about time that you hop on the Ruby on Rails bandwagon? You've heard that it'll increase your productivity exponentially, and allow you to created full fledged web applications with minimal......一起来看看 《Head First Rails》 这本书的介绍吧!

HTML 压缩/解压工具
HTML 压缩/解压工具

在线压缩/解压 HTML 代码

HSV CMYK 转换工具
HSV CMYK 转换工具

HSV CMYK互换工具