分布式文件系统-HDFS

栏目: 服务器 · 发布时间: 5年前

内容简介:大数据技术主要要解决的问题的是大规模数据的计算处理问题,那么首先要解决的就是大规模数据的存储问题。大规模数据存储要解决的核心问题有三个方面:在大数据技术出现之前,人们就需要面对这些关于存储的问题,对应的解决方案就是RAID技术。RAID(独立磁盘冗余阵列)技术主要是为了改善磁盘的存储容量,读写速度,增强磁盘的可用性和容错能力。目前服务器级别的计算机都支持插入多块磁盘(8块或者更多),通过使用RAID技术,实现数据在多块磁盘上的并发读写和数据备份。

从RAID说起

大数据技术主要要解决的问题的是大规模数据的计算处理问题,那么首先要解决的就是大规模数据的存储问题。大规模数据存储要解决的核心问题有三个方面:

  • 数据存储容量的问题,既然大数据要解决的是数以PB计的数据计算问题,而一般的服务器磁盘容量通常1-2TB,那么如何存储这么大规模的数据。

  • 数据读写速度的问题,一般磁盘的连续读写速度为几十MB,以这样的速度,几十PB的数据恐怕要读写到天荒地老。

  • 数据可靠性的问题,磁盘大约是计算机设备中最易损坏的硬件了,在网站一块磁盘使用寿命大概是一年,如果磁盘损坏了,数据怎么办?

在大数据技术出现之前,人们就需要面对这些关于存储的问题,对应的解决方案就是RAID技术。

RAID(独立磁盘冗余阵列)技术主要是为了改善磁盘的存储容量,读写速度,增强磁盘的可用性和容错能力。目前服务器级别的计算机都支持插入多块磁盘(8块或者更多),通过使用RAID技术,实现数据在多块磁盘上的并发读写和数据备份。

常用RAID技术有以下几种,如图所示。

分布式文件系统-HDFS

常用RAID技术原理图

假设服务器有N块磁盘。

RAID0

数据在从内存缓冲区写入磁盘时,根据磁盘数量将数据分成N份,这些数据同时并发写入N

块磁盘,使得数据整体写入速度是一块磁盘的N倍。读取的时候也一样,因此RAID0具有极快的数据读写速度,但是RAID0不做数据备份,N块磁盘中只要有一块损坏,数据完整性就被破坏,所有磁盘的数据都会损坏。

RAID1

数据在写入磁盘时,将一份数据同时写入两块磁盘,这样任何一块磁盘损坏都不会导致数据丢失,插入一块新磁盘就可以通过复制数据的方式自动修复,具有极高的可靠性。

RAID10

结合RAID0和RAID1两种方案,将所有磁盘平均分成两份,数据同时在两份磁盘写入,相当于RAID1,但是在每一份磁盘里面的N/2块磁盘上,利用RAID0技术并发读写,既提高可靠性又改善性能,不过RAID10的磁盘利用率较低,有一半的磁盘用来写备份数据。

RAID3

一般情况下,一台服务器上不会出现同时损坏两块磁盘的情况,在只损坏一块磁盘的情况下,如果能利用其他磁盘的数据恢复损坏磁盘的数据,这样在保证可靠性和性能的同时,磁盘利用率也得到大幅提升。

在数据写入磁盘的时候,将数据分成N-1份,并发写入N-1块磁盘,并在第N块磁盘记录校验数据,任何一块磁盘损坏(包括校验数据磁盘),都可以利用其他N-1块磁盘的数据修复。但是在数据修改较多的场景中,任何磁盘修改数据都会导致第N块磁盘重写校验数据,频繁写入的后是第N块磁盘比其他磁盘容易损坏,需要频繁更换,所以RAID3很少在实践中使用。

RAID5

相比RAID3,更多被使用的方案是RAID5。

RAID5和RAID3很相似,但是校验数据不是写入第

N

块磁盘,而是螺旋式地写入所有磁盘中。这样校验数据的修改也被平均到所有磁盘上,避免RAID3频繁写坏一块磁盘的情况。

RAID6

如果数据需要很高的可靠性,在出现同时损坏两块磁盘的情况下(或者运维管理水平比较落后,坏了一块磁盘但是迟迟没有更换,导致又坏了一块磁盘),仍然需要修复数据,这时候可以使用RAID6。

RAID6和RAID5类似,但是数据只写入N-2块磁盘,并螺旋式地在两块磁盘中写入校验信息(使用不同算法生成)。

在相同磁盘数目(N)的情况下,各种RAID技术的比较如下表所示。

分布式文件系统-HDFS

RAID技术有硬件实现,比如专用的RAID卡或者主板直接支持,也可以通过软件实现,在操作系统层面将多块磁盘组成RAID,在逻辑视作一个访问目录。RAID技术在传统关系数据库及文件系统中应用比较广泛,是改善计算机存储特性的重要手段。

RAID技术只是在单台服务器的多块磁盘上组成阵列,大数据需要更大规模的存储空间和访问速度。将RAID技术原理应用到分布式服务器集群上,就形成了Hadoop分布式文件系统HDFS的架构思想。

HDFS架构原理

和RAID在多个磁盘上进行文件存储及并行读写一样思路,HDFS在一个大规模分布式服务器集群上,对数据进行并行读写及冗余存储。因为HDFS可以部署在一个比较大的服务器集群上,集群中所有服务器的磁盘都可以供HDFS使用,所以整个HDFS的存储空间可以达到PB级容量。HDFS架构如图。

分布式文件系统-HDFS

HDFS架构

HDFS中关键组件有两个,一个是NameNode,一个是DataNode。

DataNode负责文件数据的存储和读写操作,HDFS将文件数据分割成若干块(block),每个DataNode存储一部分block,这样文件就分布存储在整个HDFS服务器集群中。应用程序客户端(Client)可以并行对这些数据块进行访问,从而使得HDFS可以在服务器集群规模上实现数据并行访问,极大地提高访问速度。实践中HDFS集群的DataNode服务器会有很多台,一般在几百台到几千台这样的规模,每台服务器配有数块磁盘,整个集群的存储容量大概在几PB到数百PB。

NameNode负责整个分布式文件系统的元数据(MetaData)管理,也就是文件路径名,数据block的ID以及存储位置等信息,承担着操作系统中文件分配表(FAT)的角色。HDFS为了保证数据的高可用,会将一个block复制为多份(缺省情况为3份),并将三份相同的block存储在不同的服务器上。这样当有磁盘损坏或者某个DataNode服务器宕机导致其存储的block不能访问的时候,Client会查找其备份的block进行访问。

block多份复制存储如下图所示,对于文件/users/sameerp/data/part-0,其复制备份数设置为2,存储的block id为1,3。block1的两个备份存储在DataNode0和DataNode2两个服务器上,block3的两个备份存储DataNode4和DataNode6两个服务器上,上述任何一台服务器宕机后,每个block都至少还有一个备份存在,不会影响对文件/users/sameerp/data/part-0的访问。

分布式文件系统-HDFS

HDFS的block复制备份策略

事实上,DataNode会通过心跳和NameNode保持通信,如果DataNode超时未发送心跳,NameNode就会认为这个DataNode已经失效,立即查找这个DataNode上存储的block有哪些,以及这些block还存储在哪些服务器上,随后通知这些服务器再复制一份block到其他服务器上,保证HDFS存储的block备份数符合用户设置的数目,即使再有服务器宕机,也不会丢失数据。

HDFS应用

Hadoop分布式文件系统可以象一般的文件系统那样进行访问:使用命令行或者编程语言API进行文件读写操作。我们以HDFS写文件为例看HDFS处理过程,如下图。

分布式文件系统-HDFS

HDFS写文件操作

  • 应用程序Client调用HDFS API,请求创建文件,HDFS API包含在Client进程中。

  • HDFS API将请求参数发送给NameNode服务器,NameNode在meta信息中创建文件路径,并查找DataNode中空闲的block。然后将空闲block的id、对应的DataNode服务器信息返回给Client。因为数据块需要多个备份,所以即使Client只需要一个block的数据量,NameNode也会返回多个NameNode信息。

  • Client调用HDFS API,请求将数据流写出。

  • HDFS API连接第一个DataNode服务器,将Client数据流发送给DataNode,该DataNode一边将数据写入本地磁盘,一边发送给第二个DataNode。同理第二个DataNode记录数据并发送给第三个DataNode。

  • Client通知NameNode文件写入完成,NameNode将文件标记为正常,可以进行读操作了。

HDFS虽然提供了API,但是在实践中,我们很少自己编程直接去读取HDFS中的数据,原因正如开篇提到,在大数据场景下,移动计算比移动数据更划算。于其写程序去读取分布在这么多DataNode上的数据,不如将程序分发到DataNode上去访问其上的block数据。但是如何对程序进行分发?分发出去的程序又如何访问HDFS上的数据?计算的结果如何处理,如果结果需要合并,该如何合并?

Hadoop提供了对存储在HDFS上的大规模数据进行并行计算的框架,就是我们之前讲的MapReduce。

分布式文件系统-HDFS


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Rework

Rework

Jason Fried、David Heinemeier Hansson / Crown Business / 2010-3-9 / USD 22.00

"Jason Fried and David Hansson follow their own advice in REWORK, laying bare the surprising philosophies at the core of 37signals' success and inspiring us to put them into practice. There's no jarg......一起来看看 《Rework》 这本书的介绍吧!

在线进制转换器
在线进制转换器

各进制数互转换器

图片转BASE64编码
图片转BASE64编码

在线图片转Base64编码工具

Markdown 在线编辑器
Markdown 在线编辑器

Markdown 在线编辑器