Spark+Hbase 亿级流量分析实战(小巧高性能的ETL)

栏目: 数据库 · 发布时间: 5年前

内容简介:在上一篇文章loghub功能要实现的功能就是扫描每天的增量日志并写入Hbase中大猪根据线上的生产环境一一把上面的功能重新分析给实现一下。

在上一篇文章 大猪 已经介绍了日志存储设计方案 ,我们数据已经落地到数据中心上了,那接下来如何ETL呢?毕竟可是生产环境级别的,可不能乱来。其实只要解决几个问题即可,不必要引入很大级别的组件来做,当然了各有各的千秋,本文主要从 易懂小巧简洁高性能 这三个方面去设计出发点,顺便还实现了一个精巧的 Filebeat

设计

loghub功能要实现的功能就是扫描每天的增量日志并写入Hbase中

Spark+Hbase 亿级流量分析实战(小巧高性能的ETL)

需要攻克如下几个小难题

Spark+Hbase 亿级流量分析实战(小巧高性能的ETL)
  1. 需要把文件中的每一行数据都取出来
  2. 能处理超过10G以上的大日志文件,并且只能占用机器一定的内存,越小越好
  3. 从上图可以看到 标黄 的是已经写入Hbase的数据,不能重复读取
  4. 非活跃文件不能扫,因为文件过多会影响整体读取IO性能
  5. 读取中的过程要保证增量数据不能录入,因为要保证offset的时候写入 mysql 稳定不跳跃

实现

大猪根据线上的生产环境一一把上面的功能重新分析给实现一下。

从第一点看还是比较简单的嘛?但是我们要结合上面的 5 个问题来看才行。

总结一句话就是: 要实现一个高性能而且能随时重启继续工作的 loghub ETL 程序

实际也必需这样做,因为生产环境容不得马虎,不然就等着被BOSS

Spark+Hbase 亿级流量分析实战(小巧高性能的ETL)

实现过程

需要有一个读取所有日志文件方法

Spark+Hbase 亿级流量分析实战(小巧高性能的ETL)

还要实现一个保存并读取文件进度的方法

Spark+Hbase 亿级流量分析实战(小巧高性能的ETL)

由于不能把一个日志文件全部读入内存进行处理 所以还需要一个能根据索引一行一行接着读取数据的方法

Spark+Hbase 亿级流量分析实战(小巧高性能的ETL)

最后剩下一个Hbase的连接池小工具

Spark+Hbase 亿级流量分析实战(小巧高性能的ETL)

几个核心方法已经写完了,接着是我们的主程序

def run(logPath: File, defaultOffsetDay: String): Unit = {
    val sdfstr = Source.fromFile(seekDayFile).getLines().mkString
    val offsetDay = Option(if (sdfstr == "") null else sdfstr)
    
    //读取设置读取日期的倒数一天之后的日期文件夹
    val noneOffsetFold = logPath
      .listFiles()
      .filter(_.getName >= LocalDate.parse(offsetDay.getOrElse(defaultOffsetDay)).minusDays(1).toString)
      .sortBy(f => LocalDate.parse(f.getName).toEpochDay)

    //读取文件夹中的所有日志文件,并取出索引进行匹配
    val filesPar = noneOffsetFold
      .flatMap(files(_, file => file.getName.endsWith(".log")))
      .map(file => (file, seeks().getOrDefault(MD5Hash.getMD5AsHex(file.getAbsolutePath.getBytes()), 0), file.length()))
      .filter(tp2 => {
        //过滤出新文件,与有增量的日志文件
        val fileMd5 = MD5Hash.getMD5AsHex(tp2._1.getAbsolutePath.getBytes())
        val result = offsets.asScala.filter(m => fileMd5.equals(m._1))
        result.isEmpty || tp2._3 > result.head._2
      })
      .par

    filesPar.tasksupport = pool

    val willUpdateOffset = new util.HashMap[String, Long]()
    val formatter = DateTimeFormatter.ofPattern("yyyyMMddHHmmssSSS")
    var logTime:String = null
    filesPar
      .foreach(tp3 => {
        val hbaseClient = HbasePool.getTable
        //因为不能全量读取数据,所有只能一条一条读取,批量提出交给HbaseClient的客户端的mutate方式优雅处理
        //foreach 里面的部分就是我们的业务处理部分
        lines(tp3._1, tp3._2, tp3._3, () => {
          willUpdateOffset.put(tp3._1.getAbsolutePath, tp3._3)
          offsets.put(MD5Hash.getMD5AsHex(tp3._1.getAbsolutePath.getBytes), tp3._3)
        })
          .foreach(line => {
            val jsonObject = parse(line)
            val time = (jsonObject \ "time").extract[Long]
            val data = jsonObject \ "data"
            val dataMap = data.values.asInstanceOf[Map[String, Any]]
              .filter(_._2 != null)
              .map(x => x._1 -> x._2.toString)

            val uid = dataMap("uid")
            logTime = time.getLocalDateTime.toString
            val rowkey = uid.take(2) + "|" + time.getLocalDateTime.format(formatter) + "|" + uid.substring(2, 8)

            val row = new Put(Bytes.toBytes(rowkey))
            dataMap.foreach(tp2 => row.addColumn(Bytes.toBytes("info"), Bytes.toBytes(tp2._1), Bytes.toBytes(tp2._2)))
            hbaseClient.mutate(row)
          })
        hbaseClient.flush()
      })
    //更新索引到文件上
    writeSeek(willUpdateOffset)
    //更新索引日期到文件上
    writeSeekDay(noneOffsetFold.last.getName)
    //把 logTime offset 写到mysql中,方便Spark+Hbase程序读取并计算
  }
复制代码

程序很精简,没有任何没用的功能在里面,线上的生产环境就应该是这子的了。 大家还可以根据需求加入程序退出发邮件通知功能之类的。 真正去算了一下也就100行功能代码,而且占用极小的内存,都不到100M,很精很精。

Spark+Hbase 亿级流量分析实战(小巧高性能的ETL)

传送门完整ETL程序源码

Spark+Hbase 亿级流量分析实战(小巧高性能的ETL)

以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

交互设计之路

交互设计之路

库帕 / Chris Ding / 电子工业出版社 / 2006-3 / 38.00元

本书是基于众多商务案例,讲述如何创建更好的、高客户忠诚度的软件产品和基于软件的高科技产品的书。本书列举了很多真实可信的实际例子,说明目前在软件产品和基于软件的高科技产品中,普遍存在着“难用”的问题。作者认为,“难用”问题是由这些产品中存在着的高度“认知摩擦”引起的,而产生这个问题的根源在于现今软件开发过程中欠缺了一个为用户利益着想的前期“交互设计”阶段。“难用”的产品不仅损害了用户的利益,最终也将......一起来看看 《交互设计之路》 这本书的介绍吧!

在线进制转换器
在线进制转换器

各进制数互转换器

html转js在线工具
html转js在线工具

html转js在线工具

RGB HSV 转换
RGB HSV 转换

RGB HSV 互转工具