Spark+Hbase 亿级流量分析实战( PV/UV )

栏目: 数据库 · 发布时间: 5年前

内容简介:作为一个百亿级的流量实时分析统计系统怎么能没有PV /UV 这两经典的超级玛丽亚指标呢,话说五百年前它俩可是鼻祖,咳咳...,不好意思没忍住,回归正文,我们先理一下整个程序的计算流程,请看大图:先从 DriverMain 入口开始撸起

作为一个百亿级的流量实时分析统计系统怎么能没有PV /UV 这两经典的超级玛丽亚指标呢,话说五百年前它俩可是鼻祖,咳咳...,不好意思没忍住,回归正文, 大猪 在上一篇已经介绍了 小巧高性能ETL程序设计与实现 了,到现在,我们的数据已经落地到Hbase 上了,而且日志的时间也已经写到 Mysql 了,万事都已经具备了,接下来我们就要撸指标了,先从两个经典的指标开始撸。

程序流程

我们先理一下整个程序的计算流程,请看大图:

Spark+Hbase 亿级流量分析实战( PV/UV )
  1. 开始计算是我们的 Driver 程序入口

  2. 开始计算之前检查监听 Redis 有没有收到程序退出通知,如果有程序结束,否则往下执行

  3. 首先去查询我们上篇文章的ETL loghub 日志的进度的平均时间点

  4. Switch 处是判断loghub 的时间距离我们上次计算的指标时间是否相差足够时间,一般定义为3分钟时间之后,因为loghub 的时间会有少量的波动情况

  5. 不满足则 Sleep 30秒,可以自己控制Sleep范围。

  6. 满足则计算 上次指标计算结束时间 ~ (loghub时间 - 3分钟日志波动)

  7. 计算完成更新指标结果并且更新指标计算时间,然后回到第 2 点。

程序实现

先从 DriverMain 入口开始撸起

//监听redis退出消息
while (appRunning) {
      val dbClient = new DBJdbc(props.getProperty("jdbcUrl"))
      //日志offset
      val loghubTime = dbClient.query("loghub").toLocalDateTime.minusMinutes(3)
      //指标计算offset
      val indicatorTime =dbClient.query("indicator").toLocalDateTime
      //两个时间相差(分)
      val betweenTimeMinutes = Duration.between(indicatorTime, loghubTime).toMinutes

      val format = DateTimeFormatter.ofPattern("yyyyMMddHHmmssSSS")
      //相差足够时间则进行指标运行,否则睡眠
      if (betweenTimeMinutes >= 1) {
        app.run(spark, indicatorTime, loghubTime)
        //计算完成更新指标时间
        dbClient.upsert(Map("offsetName" -> "indicator"), Update(sets = Map("time" -> loghubTime.toString)), "offset")
      } else {
        //让我们的老大哥睡会,别太累了
        TimeUnit.SECONDS.sleep(30)
      }
    }
复制代码

从注释上看,整体思路还是比较清晰的。

接下来我们跟着往下看 run 里面的方法做了什么有意思的操作

conf.set(TableInputFormat.INPUT_TABLE, Tables.LOG_TABLE)
conf.set("TableInputFormat.SCAN_ROW_START", start)
conf.set("TableInputFormat.SCAN_ROW_START", end)
val logDS = sc.newAPIHadoopRDD(
      conf,
      classOf[TableInputFormat2],
      classOf[ImmutableBytesWritable],
      classOf[Result]
    )
      .map(tp2 => HbaseUtil.resultToMap(tp2._2))
      .map(map => {
        LogCase(
          //子case类,存放多种格式的时间
          dt = DT(
            map.get("time").toLocalDateTimeStr(),
            map.get("time").toLocalDate().toString
          ),
          `type` = map.get("type"),
          aid = map.get("aid"),
          uid = map.get("uid"),
          tid = map.get("tid"),
          ip = map.get("ip")
        )
      }).toDS()

    logDS.cache()
    logDS.createTempView("log")
    //各类指标
    new PV().run()
    new UV().run()
复制代码

startend 就是上面传下来需要查询的日志时间范围

简要说明:就是把Hbase的时间范围数据转成SparkSQL中的一张 log

在UV 跟PV 指标计算里面就可以使用这张 log 表了

我们看看这两个经典的指标里面到底有什么乾坤:

spark.sql(
      """
        |SELECT
        |    aid,
        |    dt.date,
        |    COUNT(1) as pv
        |FROM
        |    log
        |GROUP BY
        |    aid,
        |    dt.date
      """.stripMargin)
      .rdd
      .foreachPartition(rows => {
        val props = PropsUtils.properties("db")
        val dbClient = new DBJdbc(props.getProperty("jdbcUrl"))
        rows.foreach(row => {
          dbClient.upsert(
            Map(
              "time" -> row.getAs[String]("date"),
              "aid" -> row.getAs[String]("aid")
            ),
            Update(incs = Map("pv" -> row.getAs[Long]("pv").toString)),
            "common_report"
          )
        })
        dbClient.close()
      })
复制代码

哇然一看,大哥你这也写得太简单了吧

不就是一个普通的 PV 算法,再加上分区 foreachPartition 操作把更到的每一行聚合的结果数据 upsert 到我们的 common_report 指标表

group by后面跟上要聚合的维度,以上是想统计每篇文章每天的PV

从这个方法我们就能推算出 common_report 长什么样了,至少有 time + aid 这两个唯一索引字段,还有pv这个字段,默认值肯定是 0

百闻不如一见,看看表的DDL 是不是这样子:

create table common_report
(
	id bigint auto_increment primary key,
	aid bigint not null,
	pv int default 0 null,
	uv int default 0 null,
	time date not null,
	constraint common_report_aid_time_uindex unique (aid, time)
);
复制代码

果然一点都没错。

Spark+Hbase 亿级流量分析实战( PV/UV )

再看 dbClient.upsert 里面大概也能猜到是实现了mysql的upsert功能,大概的 sql 就会生成下面格式:

INSERT INTO common_report (time, aid, pv)
VALUES ('2019-03-26', '10000', 1) ON DUPLICATE KEY UPDATE pv = pv + 1;
复制代码

大猪那 UV 是怎么实现咧?一个用户在今天来过第一次之后再来就不能重复计算了噢。

大猪答:这个简单简单,可以使用 Redis 去重嘛,但是我们使用的都是 Hbase 了,还使用它做啥子咧,具体我们看一下 UV 里面到底是如何实现的:

val logDS = spark.table("log").as(ExpressionEncoder[LogCase])
    import spark.implicits._
    logDS
      .mapPartitions(partitionT => {
        val hbaseClient = DBHbaseHelper.getDBHbase(Tables.CACHE_TABLE)
        val md5 = (log: LogCase) => MD5Hash.getMD5AsHex(s"${log.dt.date}|${log.aid}|${log.uid}|uv".getBytes)
        partitionT
          .grouped(Consts.BATCH_MAPPARTITIONS)
          .flatMap { tList =>
            tList
              .zip(hbaseClient.incrments(tList.map(md5)))
              .map(tp2 => {
                val log = tp2._1
                log.copy(ext = EXT(tp2._2))
              })
          }
      }).createTempView("uvTable")

    spark.sql(
      """
        |SELECT
        |    aid,
        |    dt.date,
        |    COUNT(1) as uv
        |FROM
        |    uvTable
        |WHERE
        |    ext.render = 1
        |GROUP BY
        |    aid,
        |    dt.date
      """.stripMargin)
      .rdd
      .foreachPartition(rows => {
        val props = PropsUtils.properties("db")
        val dbClient = new DBJdbc(props.getProperty("jdbcUrl"))
        rows.foreach(row => {
          dbClient.upsert(
            Map(
              "time" -> row.getAs[String]("date"),
              "aid" -> row.getAs[String]("aid")
            ),
            Update(incs = Map("uv" -> row.getAs[Long]("uv").toString)),
            "common_report"
          )
        })
        dbClient.close()
      })
复制代码

spark.sql 这里跟PV一样嘛,就是多了一句条件 ext.render = 1 ,但是上面那一大堆是啥子咧?

大猪CACHE_TABLE 是什么来的,是Hbase一张中间表,用户存用户UV标记的,建表语句如下,因为维度都是按天,所以我们TTL设计3天就可以了,两天也可以。

create 'CACHE_FOR_TEST',{NAME => 'info',TTL => '3 DAYS',CONFIGURATION => {'SPLIT_POLICY' => 'org.apache.hadoop.hbase.regionserver.KeyPrefixRegionSplitPolicy','KeyPrefixRegionSplitPolicy.prefix_length'=>'2'},COMPRESSION=>'SNAPPY'},SPLITS => ['20', '40', '60', '80', 'a0', 'c0', 'e0']
复制代码

那还有其它的呢?

莫慌莫慌, 大猪 这就慢慢解释道:

val logDS = spark.table("log").as(ExpressionEncoder[LogCase])
复制代码

上面这句的意思就是就是把log表给取出来,当然也可以通过参数传递。

下面的 mapPartitions 挺有意思的:

partitionT
    .grouped(1000)
        .flatMap { tList =>
          tList
            .zip(hbaseClient.incrments(tList.map(md5)))
            .map(tp2 => {
              val log = tp2._1
              log.copy(ext = EXT(tp2._2))
            })
        }
复制代码

实际上面是处理每个分区的数据,也就是转换数据,我们每来一条数据就要去Hbase那 incrment 一次,返回来的结果就是 render ,用户今天来多少次就 incrment 相应的次数。

那有什么用?我直接从Hbase GET 取出数据,再判断有没有,如果没有这个用户就是今天第一次来,再把这个用户 PUT 进Hbase打一个标记,so easy。

其实当初我们也是这么做的,后面发现业务的东西还是放在SQL里面一起写比较好,容易维护,而且incrment好处多多,因为它是带事务的,可以多线程进行修改。

而且你们也发现了 GETPUT 是两次请求操作,保证不了事务的,指标几千万的数据少了那么几条,你们都不知道我当初找它们有辛苦。

Spark+Hbase 亿级流量分析实战( PV/UV )

你们有没有发现 render = 1 的时候是代表UV(刚好等于1的时候为什么是UV?这里大家要慢慢地品尝一下了,其实就是实现了 GETPUT 操作),如果 render = 2 的时候又可以代表今天来过两次以上的用户指标,随时扩展,就问你撸这样的代码结构爽不爽?

Spark+Hbase 亿级流量分析实战( PV/UV )

看看 incrments 方法实现了啥子

def incrments(incs: Seq[String], family: String = "info", amount: Int = 1): Seq[Long] = {
    if (incs.isEmpty) {
      Seq[Long]()
    } else {
      require(incs.head.length == 32, "pk require 32 length")
      val convertIncs = incs map { pk => new Increment(Bytes.toBytes(pk.take(8))).addColumn(Bytes.toBytes(family), Bytes.toBytes(pk.takeRight(24)), amount) }
      val results = new Array[Object](convertIncs.length)
      table.batch(convertIncs.asJava, results)
      results.array.indices.map(
        ind =>
          Bytes.toLong(
            results(ind)
              .asInstanceOf[Result]
              .getValue(
                Bytes.toBytes(family),
                Bytes.toBytes(incs(ind).takeRight(24))
              )
          )
      )
    }
  }
复制代码

这个方法就是实现了 incrment 的批量处理,因为我们在线上生产环境的时候测试过,批量处理比单条处理性能高了上百倍,所以这也就是为什么要写在 mapPartitions 里面的原因了,因为只有在这个方法里面才有批量数据转换操作, foreachPartition 是批量处理操作, foreach ,与 map 是一条一条操作不能使用,我们在输出报表到Mysql的地方已经用到过了。

大猪不知不觉已经写了那么长的文章了

Spark+Hbase 亿级流量分析实战( PV/UV )

关闭计算程序只需要给redis发一条stop消息就可以啦

RedisUtil().getResource.publish("computeListenerMessage", "stop")
复制代码

不能再复制代码了,不能显得文章是靠代码撑起来的。

Spark+Hbase 亿级流量分析实战( PV/UV )

福利 完整项目源码

Spark+Hbase 亿级流量分析实战( PV/UV )

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Pro HTML5 Programming

Pro HTML5 Programming

Peter Lubbers、Brian Albers、Frank Salim / Apress / 2010-9-1 / USD 49.99

HTML5 is here, and with it, web applications take on a power, ease, scalability, and responsiveness like never before. In this book, developers will learn how to use the latest cutting-edge HTML5 web ......一起来看看 《Pro HTML5 Programming》 这本书的介绍吧!

图片转BASE64编码
图片转BASE64编码

在线图片转Base64编码工具

Base64 编码/解码
Base64 编码/解码

Base64 编码/解码

HEX HSV 转换工具
HEX HSV 转换工具

HEX HSV 互换工具