内容简介:本文通过代码实操讲解了如何使用 python 实现简单的共享锁和排他锁。上篇文章回顾:以 S 锁为例,获取锁的步骤如下:
本文通过代码实操讲解了如何使用 python 实现简单的共享锁和排他锁。
上篇文章回顾: 记一次容量提升5倍的HttpDns业务Cache调优
共享锁和排它锁
1、什么是共享锁
共享锁又称为读锁。
从多线程的角度来讲,共享锁允许多个线程同时访问资源,但是对写资源只能又一个线程进行。
从事务的角度来讲,若事务 T 对数据 A 加上共享锁,则事务 T 只能读 A; 其他事务也只能对数据 A 加共享锁,而不能加排他锁,直到事务 T 释放 A 上的 S 锁。这就保证了其他事务可以读 A,但是在事务 T 释放 A 上的共享锁之前,不能对 A 做任何修改。
2、什么是排它锁
排他锁又成为写锁。
从多线程的角度来讲,在访问共享资源之前对进行加锁操作,在访问完成之后进行解锁操作。 加锁后,任何其他试图再次加锁的线程会被阻塞,直到当前进程解锁。如果解锁时有一个以上的线程阻塞,那么所有该锁上的线程都被编程就绪状态, 第一个变为就绪状态的线程又执行加锁操作,那么其他的线程又会进入等待。 在这种方式下,只有一个线程能够访问被互斥锁保护的资源。
从事务的角度来讲,若事务T对数据对象A加上排它锁,则只允许T读取和修改数据A,其他任何事务都不能再对A加任何类型的锁,直到事务T释放X锁。它可以防止其他事务获取资源上的锁,直到事务末尾释放锁。
InnoDB 中的行锁
InnoDB实现了以下两种类型的行锁:
共享锁(S): 允许一个事务去读一行,阻止其他事务获得相同数据集的排他锁。
排他锁(X): 允许获得排他锁的事务更新数据,阻止其他事务取得相同数据集的共享读锁和排他写锁。
另外,为了允许行锁和表锁共存,实现多粒度锁机制,InnoDB 还有两种内部使用的意向锁(Intention Locks),这两种意向锁都是表锁。
意向共享锁(IS): 事务打算给数据行加行共享锁,事务在给一个数据行加共享锁前必须先取得该表的 IS 锁。
意向排他锁(IX) : 事务打算给数据行加行排他锁,事务在给一个数据行加排他锁前必须先取得该表的 IX 锁。
如果一个事务请求的锁模式与当前的锁兼容,InnoDB 就将请求的锁授予该事务;反之,如果两者不兼容,该事务就要等待锁释放。
意向锁是 InnoDB 自动加的,不需用户干预。对于 UPDATE、DELETE 和 INSERT 语句,InnoDB 会自动给涉及数据集加排他锁(X);对于普通SELECT语句,InnoDB 不会加任何锁;事务可以通过以下语句显示给记录集加共享锁或排他锁。
共享锁(S):
SELECT * FROM table_name WHERE ... LOCK IN SHARE MODE复制代码
排他锁(X):
SELECT * FROM table_name WHERE ... FOR UPDATE复制代码
用 SELECT ... IN SHARE MODE获得共享锁,主要用在需要数据依存关系时来确认某行记录是否存在,并确保没有人对这个记录进行UPDATE或者DELETE操作。但是如果当前事务也需要对该记录进行更新操作,则很有可能造成死锁,对于锁定行记录后需要进行更新操作的应用,应该使用 SELECT... FOR UPDATE 方式获得排他锁。
使用Python实现
1、 代码实现
不多说,直接上代码:
# -*- coding: utf-8 -*-import threadingclass Source: # 队列成员标识 __N = None # 排他锁 __X = 0 # 意向排他锁 __IX = 1 # 共享锁标识 __S = 2 # 意向共享标识 __IS = 3 # 同步排他锁 __lockX = threading.Lock() # 事件通知 __events = [ threading.Event(), threading.Event(), threading.Event(), threading.Event() ] # 事件通知队列 __eventsQueue = [ [], [], [], [] ] # 事件变更锁 __eventsLock = [ threading.Lock(), threading.Lock(), threading.Lock(), threading.Lock() ] # 相互互斥的锁 __mutexFlag = {} # 锁类 class __ChildLock: # 锁标识 __flag = 0 # 锁定的资源 __source = None def __init__(self, source, flag): self.__flag = flag self.__source = source # 加锁 def lock(self): self.__source.lock(self.__flag) # 解锁 def unlock(self): self.__source.unlock(self.__flag) def __init__(self): self.__initMutexFlag() self.__initEvents() # 不建议直接在外面使用,以免死锁 def lock(self, flag): # 如果是排他锁,先进进行枷锁 if flag == self.__X: self.__lockX.acquire() self.__events[flag].wait() self.__lockEvents(flag) # 不建议直接在外面使用,以免死锁 def unlock(self, flag): self.__unlockEvents(flag) if flag == self.__X: self.__lockX.release() # 获取相互互斥 def __getMutexFlag(self, flag): return self.__mutexFlag[flag] def __initMutexFlag(self): self.__mutexFlag[self.__X] = [self.__X, self.__IX, self.__S, self.__IS] self.__mutexFlag[self.__IX] = [self.__X, self.__S] self.__mutexFlag[self.__S] = [self.__X, self.__IX] self.__mutexFlag[self.__IS] = [self.__X] def __initEvents(self): for event in self.__events: event.set() # 给事件加锁, 调用 wait 时阻塞 def __lockEvents(self, flag): mutexFlags = self.__getMutexFlag(flag) for i in mutexFlags: # 为了保证原子操作,加锁 self.__eventsLock[i].acquire() self.__eventsQueue[i].append(self.__N) self.__events[i].clear() self.__eventsLock[i].release() # 给事件解锁, 调用 wait 不阻塞 def __unlockEvents(self, flag): mutexFlags = self.__getMutexFlag(flag) for i in mutexFlags: # 为了保证原子操作,加锁 self.__eventsLock[i].acquire() self.__eventsQueue[i].pop(0) if len(self.__eventsQueue[i]) == 0: self.__events[i].set() self.__eventsLock[i].release() # 获取锁 def __getLock(self, flag): lock = self.__ChildLock(self, flag) lock.lock() return lock # 获取 X 锁 def lockX(self): return self.__getLock(self.__X) # 获取 IX 锁 def lockIX(self): return self.__getLock(self.__IX) # 获取 S 锁 def lockS(self): return self.__getLock(self.__S) # 获取 IS 锁 def lockIS(self): return self.__getLock(self.__IS)复制代码
使用方式:
from lock import Source# 初始化一个锁资源source = Source()# 获取资源的X锁,获取不到则线程被阻塞,获取到了继续往下执行lock = source.lockX() lock.unlock()lock = source.lockIX() lock.unlock()lock = source.lockS() lock.unlock()lock = source.lockIS() lock.unlock()复制代码
2、实现思路
以 S 锁为例,获取锁的步骤如下:
-
检测 S 锁是否可以取到,取到了话继续执行,没有取到则阻塞,等待其他线程解锁唤醒。
-
获取与 S 锁相互冲突的锁(IX,X),并将 IX 锁和 X 锁 锁住,后续想获得 IX 锁或者 X 锁的线程就会被阻塞。
-
向 IX 锁和 X 锁的标识队列插入标识,如果此时另外一个线程拿到了 IS 锁,则会继续想 IX 锁队列标识插入标识。
-
完成加锁,返回 S 锁。
以 S 锁为例,解锁的步骤如下:
-
获取与 S 锁相互冲突的锁(IX,X),向 IX 锁和 X 锁的标识队列移除一个标识。
-
判断 IX 锁和 X 锁队列标识是否为空,如果不为空,则继续锁定,为空则解锁并唤醒被 IX 锁和 X 锁阻塞的线程。
-
完成 S 锁解锁。
3、锁兼容测试
测试代码
# -*- coding: utf-8 -*-import threadingimport timefrom lock import Source# 初始化资源source= Source()maplockname=['X','IX','S','IS']class MyThread(threading,Thread): flag = None def __init__(self, flag): super().__init__() self.flag = flag def run(self): lock = self.lock() time1 = time.time() strtime1 = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(time1)) print('我拿到 %s 锁,开始执行了喔,现在时间是 %s' % (maplockname[self.flag], strtime1)) time.sleep(1) time2 = time.time() strtime2 = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(time2)) print('我释放 %s 锁,结束执行了,现在时间是 %s' % (maplockname[self.flag], strtime2)) lock.unlock() def lock(self): if self.flag == 0: return source.lockX() elif self.flag == 1: return source.lockIX() elif self.flag == 2: return source.lockS() else: return source.lockIS() def unlock(self, lock): lock.unlock()def test_lock(): for x in range(0, 4): for y in range(0, 4): time1 = time.time() thread1 = MyThread(x) thread2 = MyThread(y) thread1.start() thread2.start() thread1.join() thread2.join() time2 = time.time() difftime = time2 - time1 if difftime > 2: print('%s 锁和 %s 锁 冲突了!' % (maplockname[x], maplockname[y])) elif difftime > 1: print('%s 锁和 %s 锁 没有冲突!' % (maplockname[x], maplockname[y])) print('')if __name__ == '__main__': test_lock()复制代码
运行结果:
我拿到 X 锁了,开始执行了喔,现在时间是 2019-02-17 18:38:09我释放 X 锁了,结束执行了,现在时间是 2019-02-17 18:38:10我拿到 X 锁了,开始执行了喔,现在时间是 2019-02-17 18:38:10我释放 X 锁了,结束执行了,现在时间是 2019-02-17 18:38:11X 锁和 X 锁 冲突了!我拿到 X 锁了,开始执行了喔,现在时间是 2019-02-17 18:38:11我释放 X 锁了,结束执行了,现在时间是 2019-02-17 18:38:12我拿到 IX 锁了,开始执行了喔,现在时间是 2019-02-17 18:38:12我释放 IX 锁了,结束执行了,现在时间是 2019-02-17 18:38:13X 锁和 IX 锁 冲突了!我拿到 X 锁了,开始执行了喔,现在时间是 2019-02-17 18:38:13我释放 X 锁了,结束执行了,现在时间是 2019-02-17 18:38:14我拿到 S 锁了,开始执行了喔,现在时间是 2019-02-17 18:38:14我释放 S 锁了,结束执行了,现在时间是 2019-02-17 18:38:15X 锁和 S 锁 冲突了!我拿到 X 锁了,开始执行了喔,现在时间是 2019-02-17 18:38:15我释放 X 锁了,结束执行了,现在时间是 2019-02-17 18:38:16我拿到 IS 锁了,开始执行了喔,现在时间是 2019-02-17 18:38:16我释放 IS 锁了,结束执行了,现在时间是 2019-02-17 18:38:17X 锁和 IS 锁 冲突了!我拿到 IX 锁了,开始执行了喔,现在时间是 2019-02-17 18:38:17我释放 IX 锁了,结束执行了,现在时间是 2019-02-17 18:38:18我拿到 X 锁了,开始执行了喔,现在时间是 2019-02-17 18:38:18我释放 X 锁了,结束执行了,现在时间是 2019-02-17 18:38:19IX 锁和 X 锁 冲突了!我拿到 IX 锁了,开始执行了喔,现在时间是 2019-02-17 18:38:19我拿到 IX 锁了,开始执行了喔,现在时间是 2019-02-17 18:38:19我释放 IX 锁了,结束执行了,现在时间是 2019-02-17 18:38:20我释放 IX 锁了,结束执行了,现在时间是 2019-02-17 18:38:20IX 锁和 IX 锁 没有冲突!我拿到 IX 锁了,开始执行了喔,现在时间是 2019-02-17 18:38:20我释放 IX 锁了,结束执行了,现在时间是 2019-02-17 18:38:21我拿到 S 锁了,开始执行了喔,现在时间是 2019-02-17 18:38:21我释放 S 锁了,结束执行了,现在时间是 2019-02-17 18:38:22IX 锁和 S 锁 冲突了!我拿到 IX 锁了,开始执行了喔,现在时间是 2019-02-17 18:38:22我拿到 IS 锁了,开始执行了喔,现在时间是 2019-02-17 18:38:22我释放 IX 锁了,结束执行了,现在时间是 2019-02-17 18:38:23我释放 IS 锁了,结束执行了,现在时间是 2019-02-17 18:38:23IX 锁和 IS 锁 没有冲突!我拿到 S 锁了,开始执行了喔,现在时间是 2019-02-17 18:38:23我释放 S 锁了,结束执行了,现在时间是 2019-02-17 18:38:24我拿到 X 锁了,开始执行了喔,现在时间是 2019-02-17 18:38:24我释放 X 锁了,结束执行了,现在时间是 2019-02-17 18:38:25S 锁和 X 锁 冲突了!我拿到 S 锁了,开始执行了喔,现在时间是 2019-02-17 18:38:25我释放 S 锁了,结束执行了,现在时间是 2019-02-17 18:38:26我拿到 IX 锁了,开始执行了喔,现在时间是 2019-02-17 18:38:26我释放 IX 锁了,结束执行了,现在时间是 2019-02-17 18:38:27S 锁和 IX 锁 冲突了!我拿到 S 锁了,开始执行了喔,现在时间是 2019-02-17 18:38:27我拿到 S 锁了,开始执行了喔,现在时间是 2019-02-17 18:38:27我释放 S 锁了,结束执行了,现在时间是 2019-02-17 18:38:28我释放 S 锁了,结束执行了,现在时间是 2019-02-17 18:38:28S 锁和 S 锁 没有冲突!我拿到 S 锁了,开始执行了喔,现在时间是 2019-02-17 18:38:28我拿到 IS 锁了,开始执行了喔,现在时间是 2019-02-17 18:38:28我释放 S 锁了,结束执行了,现在时间是 2019-02-17 18:38:29我释放 IS 锁了,结束执行了,现在时间是 2019-02-17 18:38:29S 锁和 IS 锁 没有冲突!我拿到 IS 锁了,开始执行了喔,现在时间是 2019-02-17 18:38:29我释放 IS 锁了,结束执行了,现在时间是 2019-02-17 18:38:30我拿到 X 锁了,开始执行了喔,现在时间是 2019-02-17 18:38:30我释放 X 锁了,结束执行了,现在时间是 2019-02-17 18:38:31IS 锁和 X 锁 冲突了!我拿到 IS 锁了,开始执行了喔,现在时间是 2019-02-17 18:38:31我拿到 IX 锁了,开始执行了喔,现在时间是 2019-02-17 18:38:31我释放 IX 锁了,结束执行了,现在时间是 2019-02-17 18:38:32我释放 IS 锁了,结束执行了,现在时间是 2019-02-17 18:38:32IS 锁和 IX 锁 没有冲突!我拿到 IS 锁了,开始执行了喔,现在时间是 2019-02-17 18:38:32我拿到 S 锁了,开始执行了喔,现在时间是 2019-02-17 18:38:32我释放 IS 锁了,结束执行了,现在时间是 2019-02-17 18:38:33我释放 S 锁了,结束执行了,现在时间是 2019-02-17 18:38:33IS 锁和 S 锁 没有冲突!我拿到 IS 锁了,开始执行了喔,现在时间是 2019-02-17 18:38:33我拿到 IS 锁了,开始执行了喔,现在时间是 2019-02-17 18:38:33我释放 IS 锁了,结束执行了,现在时间是 2019-02-17 18:38:34我释放 IS 锁了,结束执行了,现在时间是 2019-02-17 18:38:34IS 锁和 IS 锁 没有冲突!复制代码
4、 公平锁与非公平锁
(1)问题分析
仔细想了想,如果有一种场景,就是用户一直再读,写获取不到锁,那么不就造成脏读吗?这不就是由于资源的抢占不就是非公平锁造成的。如何避免这个问题呢?这就涉及到了公平锁与非公平锁。
对产生的结果来说,如果一个线程组里,能保证每个线程都能拿到锁,那么这个锁就是公平锁。相反,如果保证不了每个线程都能拿到锁,也就是存在有线程饿死,那么这个锁就是非公平锁。
(2)非公平锁测试
上述代码锁实现的是非公平锁,测试代码如下:
def test_fair_lock(): threads = [] for i in range(0, 10): if i == 2: # 0 代表排他锁(X) threads.append(MyThread(0)) else: # 2 代表共享锁(S) threads.append(MyThread(2)) for thread in threads: thread.start()复制代码
运行结果:
我拿到 S 锁了,开始执行了喔,现在时间是 2019-02-17 19:06:33我拿到 S 锁了,开始执行了喔,现在时间是 2019-02-17 19:06:33我拿到 S 锁了,开始执行了喔,现在时间是 2019-02-17 19:06:33我拿到 S 锁了,开始执行了喔,现在时间是 2019-02-17 19:06:33我拿到 S 锁了,开始执行了喔,现在时间是 2019-02-17 19:06:33我拿到 S 锁了,开始执行了喔,现在时间是 2019-02-17 19:06:33我拿到 S 锁了,开始执行了喔,现在时间是 2019-02-17 19:06:33我拿到 S 锁了,开始执行了喔,现在时间是 2019-02-17 19:06:33我拿到 S 锁了,开始执行了喔,现在时间是 2019-02-17 19:06:33我释放 S 锁了,结束执行了,现在时间是 2019-02-17 19:06:34我释放 S 锁了,结束执行了,现在时间是 2019-02-17 19:06:34我释放 S 锁了,结束执行了,现在时间是 2019-02-17 19:06:34我释放 S 锁了,结束执行了,现在时间是 2019-02-17 19:06:34我释放 S 锁了,结束执行了,现在时间是 2019-02-17 19:06:34我释放 S 锁了,结束执行了,现在时间是 2019-02-17 19:06:34我释放 S 锁了,结束执行了,现在时间是 2019-02-17 19:06:34我释放 S 锁了,结束执行了,现在时间是 2019-02-17 19:06:34我释放 S 锁了,结束执行了,现在时间是 2019-02-17 19:06:34我拿到 X 锁了,开始执行了喔,现在时间是 2019-02-17 19:06:34我释放 X 锁了,结束执行了,现在时间是 2019-02-17 19:06:35复制代码
可以看到由于资源抢占问题,排他锁被最后才被获取到了。
(3)公平锁的实现
实现公平锁,只需要在原有的代码进行小小得修改就行了。
class Source: # ...... 省略 def __init__(self, isFair=False): self.__isFair = isFair self.__initMutexFlag() self.__initEvents() # ...... 省略 def lock(self, flag): # 如果是排他锁,先进进行枷锁 if flag == self.__X: self.__lockX.acquire() if self.__isFair: # 如果是公平锁则,先将互斥的锁给阻塞,防止其他线程进入 self.__lockEventsWait(flag) self.__events[flag].wait() self.__lockEventsQueue(flag) else: # 如果是非公平锁,如果锁拿不到,则先等待 self.__events[flag].wait() self.__lockEvents(flag) def __lockEventsWait(self, flag): mutexFlags = self.__getMutexFlag(flag) for i in mutexFlags: # 为了保证原子操作,加锁 self.__eventsLock[i].acquire() self.__events[i].clear() self.__eventsLock[i].release() def __lockEventsQueue(self, flag): mutexFlags = self.__getMutexFlag(flag) for i in mutexFlags: # 为了保证原子操作,加锁 self.__eventsLock[i].acquire() self.__eventsQueue[i].append(self.__N) self.__eventsLock[i].release()复制代码
测试代码:
source = Source(True)def test_fair_lock(): threads = [] for i in range(0, 10): if i == 2: # 0 代表排他锁(X) threads.append(MyThread(0)) else: # 2 代表共享锁(S) threads.append(MyThread(2)) for thread in threads: thread.start()复制代码
运行结果:
我拿到 S 锁了,开始执行了喔,现在时间是 2019-02-17 19:35:16我拿到 S 锁了,开始执行了喔,现在时间是 2019-02-17 19:35:16我释放 S 锁了,结束执行了,现在时间是 2019-02-17 19:35:17我释放 S 锁了,结束执行了,现在时间是 2019-02-17 19:35:17我拿到 X 锁了,开始执行了喔,现在时间是 2019-02-17 19:35:17我释放 X 锁了,结束执行了,现在时间是 2019-02-17 19:35:18我拿到 S 锁了,开始执行了喔,现在时间是 2019-02-17 19:35:18我拿到 S 锁了,开始执行了喔,现在时间是 2019-02-17 19:35:18我拿到 S 锁了,开始执行了喔,现在时间是 2019-02-17 19:35:18我拿到 S 锁了,开始执行了喔,现在时间是 2019-02-17 19:35:18我拿到 S 锁了,开始执行了喔,现在时间是 2019-02-17 19:35:18我拿到 S 锁了,开始执行了喔,现在时间是 2019-02-17 19:35:18我拿到 S 锁了,开始执行了喔,现在时间是 2019-02-17 19:35:18我释放 S 锁了,结束执行了,现在时间是 2019-02-17 19:35:19我释放 S 锁了,结束执行了,现在时间是 2019-02-17 19:35:19我释放 S 锁了,结束执行了,现在时间是 2019-02-17 19:35:19我释放 S 锁了,结束执行了,现在时间是 2019-02-17 19:35:19我释放 S 锁了,结束执行了,现在时间是 2019-02-17 19:35:19我释放 S 锁了,结束执行了,现在时间是 2019-02-17 19:35:19我释放 S 锁了,结束执行了,现在时间是 2019-02-17 19:35:19复制代码
可以看到排他锁在第二次的时候就被获取到了。
(4)优缺点
非公平锁性能高于公平锁性能。首先,在恢复一个被挂起的线程与该线程真正运行之间存在着严重的延迟。而且,非公平锁能更充分的利用cpu的时间片,尽量的减少cpu空闲的状态时间。
参考文献:
共享锁(S锁)和排它锁(X锁):https://www.jianshu.com/p/bd3b3ccedda9
Java多线程--互斥锁/共享锁/读写锁 快速入门:https://www.jianshu.com/p/87ac733fda80
Java多线程 -- 公平锁和非公平锁的一些思考:https://www.jianshu.com/p/eaea337c5e5b
MySQL- InnoDB锁机制:https://www.cnblogs.com/aipiaoborensheng/p/5767459.html
文章首发于共公众号“小米运维”,点击查看原文。
以上所述就是小编给大家介绍的《使用 python 实现简单的共享锁和排他锁》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!
猜你喜欢:- 数据库中的共享锁与排他锁
- MySQL InnoDB 可重复读下的排他锁探索
- Mysql 共享锁(lock in share mode),排他锁(for update)
- MySQL 在高并发下的 订单撮合 系统使用 共享锁 与 排他锁 保证数据一致性
- php如何实现session,自己实现session,laravel如何实现session
- AOP如何实现及实现原理
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
TED Talks Storytelling: 23 Storytelling Techniques from the Best
Akash Karia / CreateSpace Independent Publishing Platform / 2015-1-11 / USD 6.99
"Every speaker can put these ideas into practice immediately -- and they should!" ~ Dr. Richard C. Harris, Certified World Class Speaking Coach "An insightful read" ~Dennis Waller, Top 500 Revie......一起来看看 《TED Talks Storytelling: 23 Storytelling Techniques from the Best》 这本书的介绍吧!