内容简介:今天我们来介绍一个非常“暴力”的模型:可逆ResNet。为什么一个模型可以可以用“暴力”来形容呢?当然是因为它确实非常暴力:它综合了很多数学技巧,活生生地(在一定约束下)把常规的ResNet模型搞成了可逆的!
今天我们来介绍一个非常“暴力”的模型:可逆ResNet。
为什么一个模型可以可以用“暴力”来形容呢?当然是因为它确实非常暴力:它综合了很多数学技巧,活生生地(在一定约束下)把常规的ResNet模型搞成了可逆的!
标准ResNet与可逆ResNet对比图。可逆ResNet允许信息无损可逆流动,而标准ResNet在某处则存在“坍缩”现象。
模型出自 《Invertible Residual Networks》 ,之前在 机器之心也报导过 。在这篇文章中,我们来简单欣赏一下它的原理和内容。
为什么要研究可逆模型?它有什么好处?以前没有人研究过吗?
可逆意味着什么?
意味着它是信息无损的,意味着它或许可以用来做更好的分类网络,意味着可以直接用最大似然来做生成模型,而且得益于ResNet强大的能力,意味着它可能有着比之前的Glow模型更好的表现~总而言之,如果一个模型是可逆的,可逆的成本不高而且拟合能力强,那么它就有很广的用途(分类、密度估计和生成任务,等等)。
而本文要介绍的可逆ResNet基本上满足这几点要求,它可逆起来比较简单,而且基本上不改变ResNet的拟合能力。因此,我认为它称得上是“美”的模型。
可逆模型的研究由来已久,它们被称为“流模型(flow-based model)”,代表模型有NICE、 RealNVP 和Glow,笔者曾撰文介绍过它们,另外还有一些自回归流模型。除了用来做生成模型,用可逆模型来做分类任务的也有研究,代表作是 RevNet 和 i-RevNet 。
这些流模型的设计思路基本上都是一样的: 通过比较巧妙的设计,使得模型每一层的逆变换比较简单,而且雅可比矩阵是一个三角阵,从而雅可比行列式很容易计算。 这样的模型在理论上很优雅漂亮,但是有一个很严重的问题:由于必须保证逆变换简单和雅可比行列式容易计算,那么 每一层的非线性变换能力都很弱 。事实上像Glow这样的模型,每一层只有一半的变量被变换,所以为了保证充分的拟合能力,模型就必须堆得非常深(比如256的人脸生成,Glow模型堆了大概600个卷积层,十亿参数量),计算量非常大。
而这一次的可逆ResNet跟以往的流模型不一样,它就是在普通的ResNet结构基础上加了一些约束,就使得模型成为可逆的,实际上依然保留了ResNet的基本结构和大部分的拟合能力。这样一来,以往我们在ResNet的设计经验基本上还可以用,而且模型不再需要像Glow那样拼命堆卷积了。
当然,这样做是有代价的,因为没有特别的设计,所以我们需要比较暴力的方法才能获得它的逆函数和雅可比行列式。所以,这次的可逆ResNet,很美,但也很暴力,称得上是“极致的暴力美学”。
ResNet模型的基本模块就是
\begin{equation}y = x + g(x)\triangleq F(x)\label{eq:resnet}\end{equation}
也就是说本来想用一个神经网络拟合$y$的,现在变成了用神经网络拟合$y-x$了,其中$x,y$都是向量(张量)。这样做的好处是梯度不容易消失,能训练深层网络,让信息多通道传输,等等~
背景就不多说了,但是要说明一点,我们在分类问题中用的广义上的ResNet,是允许通过$1\times 1$卷积改变维度的,但这里的ResNet指的是不改变维度的ResNet,也就是说 $x,y$的大小保持一样 。
对于一个号称“可逆”的模型,必须要回答三个问题:
1、什么时候可逆? 2、逆函数是什么? 3、雅可比行列式怎么算?
从难度上来看,这三个问题是层层递进的。当然,如果你只关心做分类问题,那么事实上保证第一点就行了;如果你关心重构图片,那么就需要第二点;如果你还想像Glow那样用最大似然来训练生成模型,那么就需要第三点。
下面按照原论文的思路,逐一解决这三个问题(三道“硬菜”),来一场暴力盛宴。
第一道硬菜是三道硬菜中相对容易啃的,当然只是“相对”,事实上也都用到了泛函分析的一些基础知识了。(客官,先别跑呀~)
因为$\eqref{eq:resnet}$是ResNet的基本模块,所以我们只需要保证每个模块都可逆就行了。而$\eqref{eq:resnet}$可逆的一个充分条件是:
\begin{equation}\text{Lip}(g)<1\end{equation}
其中
\begin{equation}\text{Lip}(g) \triangleq \max_{x_1\neq x_2}\frac{\Vert g(x_1) - g(x_2)\Vert_2}{\Vert x_1 - x_2\Vert_2}\end{equation}
是函数$g$的Lipschitz范数。也就是说,$g$的Lipschitz范数小于1,就能保证$\eqref{eq:resnet}$可逆了。那什么时候$g$的Lipschitz范数才会小于1呢?因为$g$是神经网络,神经网络是由矩阵运算和激活函数组合而成的,即一般结构是
\begin{equation}Activation(Wx+b)\end{equation}
那么由链式法则,“$g$的Lipschitz范数小于1”的一个充分条件是“$Activation$的Lipschitz范数不超过1”且“$Wx+b$的Lipschitz范数小于1”。而$Activation$只是个标量函数,“Lipschitz范数不超过1”意味着导数不超过1就行了,目前我们常用的激活函数(sigmoid、tanh、relu、elu、swish等)都满足,所以这一点不用管它;而“$Wx+b$的Lipschitz范数小于1”,意味着矩阵$W$的Lipschitz范数小于1。
矩阵$W$的Lipschitz范数其实也就是“谱范数”,记为$\text{Lip}(W)$或$\Vert W\Vert_2$都行。那啥时候出现过矩阵的谱范数?在 《深度学习中的Lipschitz约束:泛化与生成模型》 一文中我们讨论Lipschitz约束的时候就出现过,两者结合起来,结论就是:
对模型$g$的所有核权重$W$做谱归一化,然后乘上一个大于0小于1的系数$c$(即$W\leftarrow c W / \Vert W\Vert_2$),就可以使得$x+g(x)$可逆了。
为什么这样就可逆了?证明过程可以直接回答第二个问题,也就是说, 我们直接把逆函数求出来,然后就知道什么条件下可逆了 。
假如$y=x+g(x)$是可逆的,那么我们要想办法求出逆函数$x=h(y)$,这其实就是解一个非线性方程组。简单起见,我们考虑迭代
\begin{equation}x_{n+1}=y - g(x_n)\label{eq:nidiedai}\end{equation}
显然,迭代序列$\{x_n\}$是跟$y$有关的,而一旦$\{x_n\}$收敛到某个固定的函数
\begin{equation}\lim_{n\to\infty} x_n(y) = \hat{h}(y)\end{equation}
那么我们就有$\hat{h}(y)=y-g\left(\hat{h}(y)\right)$,这意味着$\hat{h}(y)$就是我们希望求的$x=h(y)$。
换句话说,如果迭代$\eqref{eq:nidiedai}$收敛,那么收敛的结果就是$x+g(x)$的逆函数。所以我们只需要搞清楚$\eqref{eq:nidiedai}$什么时候收敛。这时候前面的条件$\text{Lip}(g)<1$就能用上了,我们有
\begin{equation}\forall x_1,x_2,\quad\Vert g(x_1) - g(x_2)\Vert_2\leq \text{Lip}(g)\Vert x_1 - x_2\Vert_2\end{equation}
所以
\begin{equation}\begin{aligned}\Vert x_{n+1} - x_{n}\Vert_2&=\Vert g(x_{n}) - g(x_{n-1})\Vert_2\\
&\leq \text{Lip}(g)\Vert x_{n} - x_{n-1}\Vert_2\\
& = \text{Lip}(g)\Vert g(x_{n-1}) - g(x_{n-2})\Vert_2\\
&\leq \text{Lip}(g)^2\Vert x_{n-1} - x_{n-2}\Vert_2\\
&\dots\\
&\leq \text{Lip}(g)^n\Vert x_{1} - x_{0}\Vert_2\\
\end{aligned}\end{equation}
可以看到,$\Vert x_{n+1} - x_{n}\Vert_2\to 0$的充分条件是$\text{Lip}(g)<1$。
附:单纯指出$\Vert x_{n+1} - x_{n}\Vert_2\to 0$并不能说明序列$\{x_n\}$收敛,比如$\{\ln n\}$这个序列也满足这个条件,但发散。所以,为了证明$\text{Lip}(g)<1$时$\{x_n\}$收敛,我们还需要多做一些工作。不过这是比较数学的部分了,考虑到部分读者可能不感兴趣,因此作为附注。
对于任意正整数$k$,我们继续考虑$\Vert x_{n+k} - x_{n}\Vert_2$:
\begin{equation}\begin{aligned}\Vert x_{n+k} - x_{n}\Vert_2&\leq\Vert x_{n+k} - x_{n+k-1}\Vert_2+\dots+\Vert x_{n+2} - x_{n+1}\Vert_2+\Vert x_{n+1} - x_{n}\Vert_2\\
&\leq \left(\text{Lip}(g)^{n+k-1}+\dots+\text{Lip}(g)^{n+1}+\text{Lip}(g)^{n}\right)\Vert x_{1} - x_{0}\Vert_2\\
& = \frac{1 - \text{Lip}(g)^k}{1 - \text{Lip}(g)}\cdot\text{Lip}(g)^{n}\Vert x_{1} - x_{0}\Vert_2\\
& \leq \frac{\text{Lip}(g)^n}{1 - \text{Lip}(g)}\Vert x_{1} - x_{0}\Vert_2
\end{aligned}\label{eq:cauchy}\end{equation}
可以看到我们得到了$\Vert x_{n+k} - x_{n}\Vert_2$的一个上界,它只与$n$有关,且可以任意小。也就是说,对于任意$\varepsilon > 0$,我们可以找到一个$n$,使得对于任意的正整数$k$都有$\Vert x_{n+k} - x_{n}\Vert_2<\varepsilon$。这样的数列我们称为Cauchy列,它是必然收敛的。至此,我们终于证明了$\{x_n\}$的收敛性。
顺便一提的是,在$\eqref{eq:cauchy}$中,取$k\to\infty$,我们得到:
\begin{equation}\Vert x^* - x_{n}\Vert_2 \leq \frac{\text{Lip}(g)^n}{1 - \text{Lip}(g)}\Vert x_{1} - x_{0}\Vert_2\end{equation}
也就是说,这个迭代算法的收敛速度跟正比于$\text{Lip}(g)^n$,那么自然是$\text{Lip}(g)$越小收敛越快,但是$\text{Lip}(g)$越小模型的拟合能力越弱,原论文中它的范围是0.5~0.9。
说宏大一点,其实这就是泛函分析中的“巴拿赫不动点定理”,又称“压缩映射定理”(因为$\text{Lip}(g)$小于1,所以$g$被称为一个压缩映射)。
这样一来,我们已经回答了为什么$\text{Lip}(g)<1$就有$x+g(x)$可逆了,同时已经给出了求逆函数的方法——就是通过$\eqref{eq:nidiedai}$迭代到足够的精度:
当做好归一化操作使得$x+g(x)$可逆后,它的逆函数为$x_{n+1}=y - g(x_n)$的不动点。数值计算时,只需要迭代一定步数,使得满足精度要求即可。
终于,我们啃下了第二道硬菜。
雅可比行列式怎么算?
下面来到三个问题中最“硬核”的一个问题:雅可比行列式怎么算?为了解决它,作者综合了数学分析、矩阵论、概率论、统计采样等多方面数学工具,堪称“暴力之最”、“硬菜之最”。
首先,为什么要算雅可比行列式?前面已经说了,只有做生成模型时才有这个必要,具体细节请参考本站最早的对流模型的介绍 《细水长flow之NICE:流模型的基本概念与实现》 。接着,我们知道雅可比行列式就是雅可比矩阵的行列式,所以要把雅可比矩阵算出来:
\begin{equation}J_F\triangleq \frac{\partial}{\partial x}(x+g(x))= I + \frac{\partial g}{\partial x}\triangleq I + J_g\end{equation}
再次提醒,虽然我偷懒没有加粗,但这里的$g$输出是一个向量,$x$也是一个向量,$\partial g / \partial x$实际上就是输入和输出两两配对求偏导数,结果是一个矩阵(雅可比矩阵)。
然后,雅可比行列式就是$\det(J_F)=\det (I+J_g)$,但事实上,在做生成模型的时候,我们真正要算的,是“雅可比行列式的绝对值的对数”,即
\begin{equation}\ln |\det(J_F)| = \ln |\det(I + J_g)|\equiv \ln \det(I + J_g)\end{equation}
最后一个恒等号,是因为$\det(I + J_g)$一定是正数,所以可以去掉绝对值。这是可以证明的,但只是细节部分,我们就不纠结了,读者自行去看作者提供的参考文献吧。
然后呢?直接按定义来计算雅可比行列式?不行,因为这样子计算量实在是太大了,而且反向传播的时候,还要算行列式的导数,那就更复杂了。作者们想出了繁琐但有效的解决方法,利用恒等式(参考 《恒等式 det(exp(A)) = exp(Tr(A)) 赏析》 ):
\begin{equation}\ln\det(\boldsymbol{B}) = \text{Tr}(\ln (\boldsymbol{B}))\end{equation}
我们得到
\begin{equation}\ln\det(I + J_g) = \text{Tr}(\ln (I+J_g))\end{equation}
如果能求出$\ln (I+J_g)$来,然后求迹(trace,对角线元素之和)就行了。怎么求$\ln (I+J_g)$呢?还是参考 《恒等式 det(exp(A)) = exp(Tr(A)) 赏析》 ,暴力展开:
\begin{equation}\ln (I + J_g) = \sum_{n=1}^{\infty}(-1)^{n-1}\frac{J_g^n}{n}\label{eq:duishujishu}\end{equation}
注意这个级数收敛的条件是$\Vert J_g\Vert_2<1$,这正好意味着$\text{Lip}(g)<1$,而这正是可逆ResNet的约束,前后完全自洽。
现在$\ln (I + J_g)$变成了一个无穷级数,如果截断$n$项,那么误差也正比于$\text{Lip}(g)^n$,所以我们要看$\text{Lip}(g)$来决定截断的数目。于是我们可以写出
\begin{equation}\text{Tr}(\ln (I + J_g)) = \sum_{n=1}^{N}(-1)^{n-1}\frac{\text{Tr}(J_g^n)}{n}+\mathscr{O}\left(\text{Lip}(g)^N\right)\label{eq:det2tr}\end{equation}
问题解决了吗?上式需要我们去计算$J_g^n$,注意$J_g$是一个矩阵,我们要算矩阵的$n$次方(想想算两个矩阵乘法的工作量)。于是作者们想:
既然分析的 工具 用完了,那我们就上概率统计吧。
假设$p(u)$是一个多元概率分布,其均值为0、协方差为单位矩阵(显然标准正态分布符合要求),那么对于任意矩阵$A$,我们有
\begin{equation}\text{Tr}(A)=\mathbb{E}_{u_1,u_2\sim p(u)}\big[u_1^{\top}Au_2\big]\end{equation}
然后,作者提出了一个显得“既无赖又合理”的方法:对于每次迭代,我只从$p(u)$中随机选两个向量$u_1,u_2$出来,然后认为$u_1^{\top}Au_2$就是$\text{Tr}(A)$,即
\begin{equation}\text{Tr}(\ln (I + J_g)) \approx \sum_{n=1}^{N}(-1)^{n-1}\frac{u_1^{\top} J_g^n u_2}{n},\quad u_1,u_2\sim p(u)\label{eq:tr-caiyang}\end{equation}
读者可能就有意见了,不是要对所有向量求平均吗?只随机挑两个就行了?其实还真的是可以了,理由如下:
1、我们优化都是基于随机梯度下降的,本来就带有误差,而只随机挑两个也有误差,而每步迭代都重新挑不同的$u_1,u_2$,在一定程度上就能抵消误差; 2、更重要的原因是,我们要算雅可比行列式的对数,只是用它来做一个额外的loss,来保证模型不会坍缩,简单来讲,可以将它看称一个正则项,而既然是一个正则项,有点误差也无妨。
所以,$\text{Tr}(J_g^n)$的计算就被作者用这么粗暴(又有效)的方案解决了。注意到
\begin{equation}u_1^{\top} J_g^n u_2=u_1^{\top} J_g(\dots(J_g(J_g u_2)))\end{equation}
所以不需要把$J_g^n$算出来,而是每步只需要算一个矩阵与一个向量的乘法,并且每步计算可以重复利用,因此计算量是大大减少的。
所以,最终可以总结为:
将雅可比矩阵做对数级数展开$\eqref{eq:duishujishu}$,然后将行列式计算转化为迹的计算$\eqref{eq:det2tr}$,并且利用概率采样的方式$\eqref{eq:tr-caiyang}$,就可以最高效地计算雅可比行列式。
其实笔者一开始是就被“可逆ResNet”这么美好的构思吸引过来的,但是看到这里,我发现我也怂了,这绝对对得起“硬杠ResNet”的评价呀。本来想对照着好歹实现个mnist的生成来玩玩,后来确认有这么多技巧,如此之暴力,我也放弃了。
所以,还是来看看原论文的实验结果好了。
首先是一个人造的Toy数据集,也就是构造一些有规律的随机点来,然后用生成模型去拟合它的分布,GAN中也常做这样的实验。从下图可以看到可逆ResNet的效果比Glow好得多,归根结底,我觉得是因为可逆ResNet是一个很对称的、没有什么偏置的模型,而Glow则是有偏的,它需要我们以某种方式打乱输入,然后对半切分,对半之后两部分的运算是不一样的,这就带来了不对称。
可逆ResNet实验:Toy数据集
一开始我们就说了,既然是ResNet的一种,最基本的用途就是分类了。下表表明用可逆ResNet做分类任务,效果也是很不错的,Lipschitz约束的存在不会明显影响分类结果(表中的$c$就是$\text{Lip}(g)$)。
可逆ResNet实验:分类效果
其实流模型系列在生成复杂图片方面还远比不上GAN,但相互之间的定量对比倒没有问题。下图也表明可逆ResNet作为一个基于流的生成模型方面也是很优秀的。
可逆ResNet实验:生成模型效果
这样活生生地取硬杠ResNet可真是一件苦力活,我就单纯的解读就已经这么累了,真佩服作者的数学功底。当然,最后作者终究还是成功了,想必成功的喜悦也是很丰盛的。总的来说,整个工作很暴力,但细细品味之下并没有什么违和感,反倒是有一种浑然的美感在里边,并非简单的堆砌数学公式。
唯一的问题是,整个“硬杠”的流程还是挺复杂的,因此要推广使用还是得有好的封装,而这往往就让很多人望而却步了。还有一个问题,就是流模型系列为了保证可逆,自然是不能降维的,但不降维必然就导致计算量大,这是个矛盾的地方。
一个有趣的想法是,对于降维的情形,能不能搞个类似矩阵的“伪逆”那样的模型,来达到类似可逆ResNet的效果呢?非方阵也可以搞个行列式出来的(比如《再谈非方阵的行列式》),因此降维变换也应该能够搞个雅可比行列式的对数出来。貌似不少地方是可以推广过来的。
流模型后面的方向究竟如何呢?让我们拭目以待。
转载到请包括本文地址: https://kexue.fm/archives/6482
如果您还有什么疑惑或建议,欢迎在下方评论区继续讨论。
如果您觉得本文还不错,欢迎/本文。打赏并非要从中获得收益,而是希望知道科学空间获得了多少读者的真心关注。当然,如果你无视它,也不会影响你的阅读。再次表示欢迎和感谢!
如果您需要引用本文,请参考:
苏剑林. (2019, Mar 21). 《细水长flow之可逆ResNet:极致的暴力美学 》[Blog post]. Retrieved from https://kexue.fm/archives/6482
以上所述就是小编给大家介绍的《细水长flow之可逆ResNet:极致的暴力美学》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!
猜你喜欢:- ResNet架构可逆!多大等提出性能优越的可逆残差网络
- 工程师如何培养美学思维
- 麒麟软件商店改版重构,重新定义设计美学
- NiLang:可逆计算,微分万物
- 可逆计算:下一代软件构造理论
- 不可逆的类初始化过程
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
51单片机应用从零开始
杨欣、王玉凤、刘湘黔 / 清华大学 / 2008-1 / 39.80元
《51单片机应用与实践丛书•51单片机应用从零开始》在分析初学者认知规律的基础上,结合国内重点大学一线教师的教学经验以及借鉴国外经典教材的写作手法,对51单片机的应用基础知识进行系统而翔实的介绍。读者学习每一章之后,"实例点拨"环节除了可以巩固所学的内容外,还开辟了单片机应用的视野;再加上"器件介绍"环节,又充实了对单片机从基础到应用所需要的知识。8051单片机不仅是国内用得最多的单片机之一,同时......一起来看看 《51单片机应用从零开始》 这本书的介绍吧!