作者: 黄天元 ,复旦大学博士在读,目前研究涉及文本挖掘、社交网络分析和机器学习等。希望与大家分享学习经验,推广并加深R语言在业界的应用。
邮箱:huang.tian-yuan@qq.com
本章将会介绍如何在R中完成数据表的连接操作 。首先要明确一个问题:为什么要进行连接?本质上来说,连接就是按照一定的对应规则,把两个表格合并为一个表格的操作。举个例子:比如我们一张表格中有乐队的歌手名字和他们所属的乐队,另一张表格有歌手的名字和他们擅长的乐器类型。因为两张表格都含有歌手的名字,而歌手的名字也是唯一的(在数据库理论框架中,这个属性被称为主键),即不存在一张表格会重复出现同一个歌手的名字。这个时候,我们就希望把两张表格合并起来,做一张包含歌手名字、所属乐队、擅长乐器的大表格。通过连接,我们能够把众多表格的数据合并起来,从而让孤立的数据能够联系在一起。
本章会采用较为简单的数据集进行实现,下面我们会参考dplyr的帮助文档举例,前期准备如下:
1library(tidyverse) 2band_members 3 4## # A tibble: 3 x 2 5## name band 6## <chr> <chr> 7## 1 Mick Stones 8## 2 John Beatles 9## 3 Paul Beatles 10 11band_instruments 12 13## # A tibble: 3 x 2 14## name plays 15## <chr> <chr> 16## 1 John guitar 17## 2 Paul bass 18## 3 Keith guitar 19 20band_instruments2 21 22## # A tibble: 3 x 2 23## artist plays 24## <chr> <chr> 25## 1 John guitar 26## 2 Paul bass 27## 3 Keith guitar
观察表格,我们可以知道,band_members包含了歌手名称和乐队信息,band_instruments包含歌手名称和乐器信息,band_instruments2与band_instrument包含的信息一样,但是歌手名称的列名称由name变化为artist。
基本概念
连接分为很多种,包括 内连接、全链接、左连接、右连接 等。我们先介绍一些基础的逻辑,先看下面这张图:
下面我们逐个讲解这些连接的概念。 首先我们来讲内连接,又叫做自然连接。还是歌手、乐队、乐器的例子,比如我们的A表格中有歌手名称和乐队的信息,B表格中有歌手名称和擅长乐器的信息。另外,我们发现两张表格中,A表格包含的歌手信息和B表格不同,有的歌手只有A表格有,B表格就没有;有的歌手只有B表格有,但是A表格没有。但是我们还是希望把A表格和B表格连接起来,形成一个大表格C。采用内连接的话,就会把A表格和B表格都有的歌手提取出来(也就是取了一个交集),然后对两个表格的列进行连接。
下面介绍左连接和右连接。如果是A表格左连接B表格的话,那么就是A表格的歌手肯定全部保留,如果在A里面有的歌手,在B中找不到,那么就需要填充缺失值,一切以A表格为主。理解了左连接,右连接就非常简单了,它其实就是左连接的逆运算,也就是说A右连接B,实际就是B左连接A。就是这么简单。 最后我们讲一下全连接。全连接就是A表格B表格的歌手我们统统都保留,但是如果A表格有的歌手B表格没有,那么在B表格的列中就需要填充缺失值;同理,如果B表格的歌手A没有,那么A表格带来的列也需要填充缺失值。
如果还是不理解,可以看一下下面这一张图片。
基本连接实操
内
连接
1band_members %>% 2inner_join(band_instruments) 3 4## Joining, by = "name" 5 6## # A tibble: 2 x 3 7## name band plays 8## <chr> <chr> <chr> 9## 1 John Beatles guitar 10## 2 Paul Beatles bass
SQL代码如下:
1<SQL> SELECT `TBL_LEFT`.`name` AS `name`, `TBL_LEFT`.`band` AS `band`, `TBL_RIGHT`.`plays` AS `plays` 2FROM `band_members` AS `TBL_LEFT` 3INNER JOIN `band_instruments` AS `TBL_RIGHT` 4ON (`TBL_LEFT`.`name` = `TBL_RIGHT`.`name`)
需要注意的是,如果没有指定根据哪个列(主键)进行合并,那么在连接的时候,函数会自动默认用两个表格都包含的列进行连接。在我们的例子中,因为两个表格都包含名为name的列,因此会根据name来进行连接。如果需要指定用哪些列进行连接,可以更改by参数,例子如下:
1band_members %>% 2inner_join(band_instruments2, by = c("name" = "artist")) 3 4## # A tibble: 2 x 3 5## name band plays 6## <chr> <chr> <chr> 7## 1 John Beatles guitar 8## 2 Paul Beatles bass
这样一来,我们就用band_members的name列与band_instrument2的artist进行了连接。
另外一点需要明确的是,合并之后,两个表合并的键只会保留其中一个,也就是第一个表。如果两者的键的名称不一样,也只会保留第一个,比如上面的例子中,我们合并的表格已经没有出现artist这一列,而是统一合并到name这一列中。
左
连接
1band_members %>% 2left_join(band_instruments) 3 4## Joining, by = "name" 5 6## # A tibble: 3 x 3 7## name band plays 8## <chr> <chr> <chr> 9## 1 Mick Stones <NA> 10## 2 John Beatles guitar 11## 3 Paul Beatles bass
SQL代码如下:
1<SQL> SELECT `TBL_LEFT`.`name` AS `name`, `TBL_LEFT`.`band` AS `band`, `TBL_RIGHT`.`plays` AS `plays` 2FROM `band_members` AS `TBL_LEFT` 3LEFT JOIN `band_instruments` AS `TBL_RIGHT` 4ON (`TBL_LEFT`.`name` = `TBL_RIGHT`.`name`)
右
连接
1band_members %>% 2right_join(band_instruments) 3 4## Joining, by = "name" 5 6## # A tibble: 3 x 3 7## name band plays 8## <chr> <chr> <chr> 9## 1 John Beatles guitar 10## 2 Paul Beatles bass 11## 3 Keith <NA> guitar
SQL代码如下:
1<SQL> SELECT `TBL_RIGHT`.`name` AS `name`, `TBL_LEFT`.`band` AS `band`, `TBL_RIGHT`.`plays` AS `plays` 2FROM `band_members` AS `TBL_LEFT` 3RIGHT JOIN `band_instruments` AS `TBL_RIGHT` 4ON (`TBL_LEFT`.`name` = `TBL_RIGHT`.`name`)
全
连接
1band_members %>% 2full_join(band_instruments) 3 4## Joining, by = "name" 5 6## # A tibble: 4 x 3 7## name band plays 8## <chr> <chr> <chr> 9## 1 Mick Stones <NA> 10## 2 John Beatles guitar 11## 3 Paul Beatles bass 12## 4 Keith <NA> guitar
SQL代码如下:
1<SQL> SELECT coalesce(`TBL_LEFT`.`name`, `TBL_RIGHT`.`name`) AS `name`, `TBL_LEFT`.`band` AS `band`, `TBL_RIGHT`.`plays` AS `plays` 2FROM `band_members` AS `TBL_LEFT` 3FULL JOIN `band_instruments` AS `TBL_RIGHT` 4ON (`TBL_LEFT`.`name` = `TBL_RIGHT`.`name`)
大家可以通过观察结果来体会不同连接的效果。
如果两个表格中用相同名字的列怎么办?连接函数会自动给同名列加入后缀,比如A表格和B表格都有一列名为same,那么合并之后,会出现两列,名字分别为same.x和same.y。后缀名是可以变更的,你可以通过suffix参数对后缀名进行设置。
基
于多个列进行连接
有时候我们不仅仅需要基于单列连接,而且要用到基于多个列的连接。比如我们遇到这么一个问题:我们两个表格都有年、月、日的数据,我们需要把两个表格按照日期对应起来,那么就需要年月日都对的上号才能够进行连接。下面我们来举个例子,我们先构造两个表:
1d1 <- tibble( 2x = letters[4:6], 3y = LETTERS[4:6], 4a = rnorm(3) 5) 6 7d2 <- tibble( 8x2 = letters[6:4], 9y2 = LETTERS[6:4], 10b = rnorm(3) 11) 12 13d1 14 15## # A tibble: 3 x 3 16## x y a 17## <chr> <chr> <dbl> 18## 1 d D 0.140 19## 2 e E 0.0746 20## 3 f F -0.549 21 22d2 23 24## # A tibble: 3 x 3 25## x2 y2 b 26## <chr> <chr> <dbl> 27## 1 f F -0.355 28## 2 e E -1.47 29## 3 d D -0.490
下面我们要把d1和d2连接起来,根据它们的前两列:
1left_join(d1, d2, by = c("x" = "x2", "y" = "y2")) 2 3## # A tibble: 3 x 4 4## x y a b 5## <chr> <chr> <dbl> <dbl> 6## 1 d D 0.140 -0.490 7## 2 e E 0.0746 -1.47 8## 3 f F -0.549 -0.355
如果不能够确定两个表格中是否有以及有多少相同的列名称,在连接的时候应该总是指定by参数,来决定两个表格究竟基于什么键进行连接。
事实上,两个表格的连接可以基于无穷多的列,比如年月日就涉及了3列,如果再加上地理位置等信息,就更多了。这也充分告诉我们,连接能够给我们连接数据带来巨大的便利。
半
连接(semi_join)与反连接(anti_join)
半连接与反连接在实际工作中相对比较少用,但是这也取决于你的工作内容是什么。首先需要声明的是,半连接和反连接都只会返回“左表”的内容,也就是A表格与B表格进行半连接或反连接的时候,只会返回A表格的信息,不会返回B表格的信息。其中,半连接其实相当于进行了一次内连接,不过,它不会保留B表格的任何内容(也就是没有保留B表格的列)。反连接则与半连接相反,它会匹配在A表格出现而B表格没有出现的键值,比如A表格x列出现了a,b,c,B表格x列出现了b,c,d,那么半连接会保留A表格x列出现b,c的记录,反连接则会保留A表格x列出现a的记录。
纸上得来终觉浅,我们来进行实际操作:
1band_members %>% 2semi_join(band_instruments) 3 4## Joining, by = "name" 5 6## # A tibble: 2 x 2 7## name band 8## <chr> <chr> 9## 1 John Beatles 10## 2 Paul Beatles 11 12band_members %>% 13anti_join(band_instruments) 14 15## Joining, by = "name" 16 17## # A tibble: 1 x 2 18## name band 19## <chr> <chr> 20## 1 Mick Stones
SQL代码如下:
1<SQL> SELECT * FROM `band_members` AS `TBL_LEFT` 2 3WHERE EXISTS ( 4SELECT 1 FROM `band_instruments` AS `TBL_RIGHT` 5WHERE (`TBL_LEFT`.`name` = `TBL_RIGHT`.`name`) 6) 7 8<SQL> SELECT * FROM `band_members` AS `TBL_LEFT` 9 10WHERE NOT EXISTS ( 11SELECT 1 FROM `band_instruments` AS `TBL_RIGHT` 12WHERE (`TBL_LEFT`.`name` = `TBL_RIGHT`.`name`) 13)
小
结
本章介绍了强大的数据表连接操作,在实际工作中,连接操作的速度是非常快的,效率极高。对于内连接、全连接、左连接、右连接是我们工作中最常用的连接方法,需要牢牢把握。我们还介绍了如何根据多个键值进行连接,并简要介绍了半连接和反连接的概念和操作方法。需要注意的是,当进行复杂连接时,一定要用by参数指定不同表格中用于连接的键,否则容易发生错误。
——————————————
往期精彩:
天善智能 每日一道算法题,打卡学习 小程序
本文由R语言中文社区 创作,采用 知识共享署名-相同方式共享 3.0 中国大陆许可协议 进行许可。
转载、引用前需联系作者,并署名作者且注明文章出处。
本站文章版权归原作者及原出处所有 。内容为作者个人观点, 并不代表本站赞同其观点和对其真实性负责。本站是一个个人学习交流的平台,并不用于任何商业目的,如果有任何问题,请及时联系我们,我们将根据著作权人的要求,立即更正或者删除有关内容。本站拥有对此声明的最终解释权。
以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网
猜你喜欢:- tcp 长连接与短连接
- 没有 HTTP 连接池,空谈什么持久连接
- Linux中软连接和硬连接的区别
- sql – 哪个更好..左外连接还是右外连接?
- 连接池中的连接失效的几种处理方案
- 解决golang使用elastic连接elasticsearch时自动转换连接地址
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。