内容简介:如果看过我的上一篇关于 mesos 的文章,应该还记得 mesos 的资源调度策略写的泛化的 max-min fairness 算法,其实这个就是 DRF 算法。DRF,全称 dominant resource fairness,由伯克利大学提出,论文链接在文末列出。论文中介绍 DRF 为 generaliztion of max-min fairness to multiple resource types,所以下面先介绍一下 max-min fairness 算法。我们经常会遇到将稀缺资源分配给多个用户
如果看过我的上一篇关于 mesos 的文章,应该还记得 mesos 的资源调度策略写的泛化的 max-min fairness 算法,其实这个就是 DRF 算法。
DRF,全称 dominant resource fairness,由伯克利大学提出,论文链接在文末列出。论文中介绍 DRF 为 generaliztion of max-min fairness to multiple resource types,所以下面先介绍一下 max-min fairness 算法。
1. Max-min fairness
我们经常会遇到将稀缺资源分配给多个用户的情况,每个用户获得资源的权利都相同,但是需求数却可能不同,这个时候应该怎么办?一种常用的方法叫 max-min fairness share,中文可以叫最大最小化公平分配算法,也就是尽量满足用户中的最小的需求,然后将剩余的资源公平分配给剩下的用户。形式化定义如下:
- 资源分配以需求递增的方式进行分配
- 每个用户获得的资源不超过其需求
- 未得到满足的用户等价平方剩下的资源
更形象的表达如下,有用户 1, …, n,资源需求分别为 x1 , x2 , …, xn .不失一般性,假设 x1 <= x2 <= … <= xn 。假设资源总数为 C。然后先给需求最小 x1 的用户分配资源数 C/n 。如果 x1 < C/n,则用户 1 剩余资源 C/n - x1,则剩下的用户每人获取资源数为 C/n + (C/n - x1)/(n-1),然后依次处理剩下的用户,直到资源数小于等于需求数或者所有用户分配完。举个例子如下:
用户 1, 2, 3, 4 的需求分别为 2, 2.6, 4, 5,总资源数为 10。首先我们将资源数平分 4 等份,10/4 = 2.5。用户 1 需求是 2,则剩余 2.5 - 2 = 0.5,0.5 再平分给用户 2,3,4,0.5/3 = 0.1666…。然后用户 2 需求 2.6,剩余 2.5 + 0.1666 - 2.6 = 0.066…,再平分,0.066/2 = 0.033…,则用户 3 获得 2.5 + 0.66… + 0.033… = 2.7 ,此时不满足资源需求,结束。最终 4 个用户获得的资源数依次为 2, 2.6, 2.7, 2.7。
2. Weighted max-min fairness
上面我们假设每个用户获得资源的权重一样,对于权重不一样的处理方式也就是 weighted max-min fairness share。用户 1,2,…,n 的权重分别为 w1, w2 , …, wn ,这也就意味我们第一次总资源切分以及之后多余资源切分不是等分,而是按权重来切分。举例如下。
用户 1, 2, 3, 4 需要的资源数分别为 4, 2, 10, 4,权重分别为 2.5, 4, 0.5, 1,资源总数为 16。首先对权重做处理为 5, 8, 1, 2,然后将资源 16 按权重切分每个用户获得资源数:5, 8, 1, 2。我们先遍历可以满足需求的用户:用户 1 需要资源 4,得到 5, 剩余 1。用户需要资源 2,得到 8,剩余 6。用户 3 和 4 资源无法满足。总剩余资源数为 7,按权重分给用户 3 和 4,用户 4 得到资源 7 2/3 + 2 = 6.666 多于需求 4,剩下 2.666,分给用户 3。最后用户 3 获得资源数为 1 + 7 1/3 + 2.666 = 6。
3. DRF
max-min fairness 算法的最大问题是认为资源是单一的,但是现实情况中资源却不是单一的,CPU,RAM,I/O 等都是计算机资源。这个时候 DRF 应运而生。简单来说 DRF 就是 max-min fairness 算法的泛化版本,可以支持多种类型资源的 fairness。所谓多种资源的 fairness 是每个用户在主资源,也就是 DRF 中的 DR (Domain Resource),上是满足 max-min fairness 的。
那么何谓 Dominant Resource 呢?简而言之,用户被分配的资源中占比总资源比重最大的资源就是 Dominant Resource。举个例子,系统拥有资源 9 CPUs, 18 GB RAM,用户 A 的 task 需要资源为<1 cpu,4="" gb="" ram="">,则用户 A 的资源占比分别为 CPU 1/9,RAM 2/9,则用户 A 的 Dominant Resource 就是 RAM。用户 B 的 task 需要资源<3 1="" cpus,="" gb="" ram="">,则用户 B 的 Dominant Resource 为 CPU。最后 DRF 最求的结果就是平等权利的用户的 Dominant Resource 占的份额是一样的:分配给 A<3 12="" cpus,="" gb="" ram="">运行 3 个 task;分配给 B<6 cpus,="" 2gb=""> 资源可以运行两个 task。这样 A 的 DR 占的份额为 12/18 = 2/3,B 的 DR 占比 6/9 = 2/3。
我们看一下具体的计算的过程,继续使用上述的例子。设 x 和 y 为用户 A,B 所得资源可以运行的 task 个数,则可以得到下面的优化函数
max(x,y)
s.t
x+3y\leq9 (CPU total)
4x+y \leq 18 (RAM total)
\cfrac{2x}{9} = \cfrac{y}{3}
解得:x = 3, y = 2。
需要注意的是,并不是说 Dominant Resource 占比一定要相同,和 max-min fairness 算法一样,当其中一个用户的需求已经得到满足,剩下的资源即可全部分配给其他用户。DRF 算法的形式化定义如下:
4. Weighted DRF
带权重的 DRF 算法可以认为是 DRF 算法和 weighted max-min fairness 算法的结合。每个用户都分配一个权重向量 W_i=
除此之外,u_i,_j 表示用户 i 对资源 j 的需求占比,则用户 i 的 dominant resource 计算方式为 s_i = max_j {u_i,_j / w_i,_j} ,也就是全局占比最大的资源,剩下的计算和 DRF 算法类似。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网
猜你喜欢:- Hadoop 系列(二)—— 集群资源管理器 YARN
- 京东万台规模Hadoop集群 | 分布式资源管理与作业调度
- Memcache/Redis 集群管理探索与实现:美图开源 PaaS 平台资源网关
- Kubernetes 资源管理概述
- 初略讲解Flutter的资源管理
- 虚拟化云计算中的资源管理策略
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
数值方法和MATLAB实现与应用
拉克唐瓦尔德 / 机械工业出版社 / 2004-9 / 59.00元
本书是关于数值方法和MATLAB的介绍,是针对高等院校理工科专业学生编写的教材。数值方法可以用来生成其他方法无法求解的问题的近似解。本书的主要目的是为应用计算打下坚实的基础,由简单到复杂讲述了标准数值方法在实际问题中的实现和应用。本书通篇使用良好的编程习惯向读者展示了如何清楚地表达计算思想及编制文档。书中通过给读者提供大量的可直接运行的代码库以及讲解MARLAB工具箱中内置函数使用的数量方法,帮助......一起来看看 《数值方法和MATLAB实现与应用》 这本书的介绍吧!