matlab练习程序(求向量间的旋转矩阵与四元数)

栏目: 编程工具 · 发布时间: 5年前

内容简介:问题是这样,如果我们知道两个向量v1和v2,计算从v1转到v2的旋转矩阵和四元数,由于旋转矩阵和四元数可以互转,所以我们先计算四元数。我们可以认为v1绕着向量u旋转θ四元数q可以表示为

问题是这样,如果我们知道两个向量v1和v2,计算从v1转到v2的旋转矩阵和四元数,由于旋转矩阵和四元数可以互转,所以我们先计算四元数。

我们可以认为v1绕着向量u旋转θ 角度到v2,u垂直于v1-v2平面。

四元数q可以表示为 cos(

所以我们求出u和θ/2即可, u等于v1与v2的叉积,不要忘了单位化; θ/2用向量夹角公式就能求。

clear all;
close all;
clc;

v1=[1 2 3];
v2=[4 5 6];

%转为单位向量
nv1 = v1/norm(v1);
nv2 = v2/norm(v2);

if norm(nv1+nv2)==0
    q = [0 0 0 0];
else
    u = cross(nv1,nv2);         
    u = u/norm(u);
    
    theta = acos(sum(nv1.*nv2))/2;
    q = [cos(theta) sin(theta)*u];
end

%由四元数构造旋转矩阵
R=[2*q(1).^2-1+2*q(2)^2  2*(q(2)*q(3)+q(1)*q(4)) 2*(q(2)*q(4)-q(1)*q(3));
    2*(q(2)*q(3)-q(1)*q(4)) 2*q(1)^2-1+2*q(3)^2 2*(q(3)*q(4)+q(1)*q(2));
    2*(q(2)*q(4)+q(1)*q(3)) 2*(q(3)*q(4)-q(1)*q(2)) 2*q(1)^2-1+2*q(4)^2];

s = nv1*R;

%显示结果
v2
s*norm(v2)

参考:

https://stackoverflow.com/questions/1171849/finding-quaternion-representing-the-rotation-from-one-vector-to-another

https://blog.csdn.net/shenshikexmu/article/details/70991286

https://blog.csdn.net/shenshikexmu/article/details/53608224


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

从零开始做产品经理

从零开始做产品经理

萧七公子 / 中国华侨出版社 / 2016-12-1 / 27.9

《从零开始做产品经理:产品经理的第一本书》根据产品经理的能力需求与成长体系,共分为八章内容,从了解产品开始,到挖掘用户需求、进行产品设计、管理团队、进行项目管理、产品运营、把握产品的生命周期,以及产品经理的成长路径,全面阐释了产品经理的修炼之道。《从零开始做产品经理:产品经理的第一本书》书中信息量大,图文并茂,论点与论据相得益彰,并且融合了丰富的案例与故事,使得整个阅读过程妙趣横生而且迅速开“悟道......一起来看看 《从零开始做产品经理》 这本书的介绍吧!

MD5 加密
MD5 加密

MD5 加密工具

XML、JSON 在线转换
XML、JSON 在线转换

在线XML、JSON转换工具

HEX CMYK 转换工具
HEX CMYK 转换工具

HEX CMYK 互转工具