RoR(ResNet of ResNet) - 用于图像分类的多级残差网络
栏目: Ruby on Rails · 发布时间: 5年前
内容简介:本文为 AI 研习社编译的技术博客,原标题 :Review: RoR — ResNet of ResNet / Multilevel ResNet (Image Classification)
本文为 AI 研习社编译的技术博客,原标题 :
Review: RoR — ResNet of ResNet / Multilevel ResNet (Image Classification)
作者 | Sik-Ho Tsang
翻译 | 斯蒂芬·二狗子
校对 | 酱番梨 审核 | 约翰逊·李加薪 整理 | 立鱼王
原文链接:
https://towardsdatascience.com/review-ror-resnet-of-resnet-multilevel-resnet-image-classification-cd3b0fcc19bb
在本文中,我们简短地回顾一下RoR(残余网络的残余网络)。在成为最先进的深度学习方法并赢得众多竞赛认可的ResNet成功之后,有许多研究者对如何推广或改进ResNet的做出了研究,相关的有 Pre-Activation ResNet, ResNet in ResNet (RiR), ResNet with Stochastic Depth (SD), Wide Residual Network (WRN)。RoR就是一篇改进ResNet的论文,它们引入了一组概念,就是带有短连接的ResNet模块。这个创新使得网络成为多级分层的ResNet模型。这篇论文于2016年首次出现在ResNet之后,于2017年被接受并最终于2018年TCSVT发表,已经有数十篇引文。
本文包括的内容:
-
RoR的概念(Res网络模块的残差网络)
-
RoR-m:等级数m
-
RoR的不同版本
-
结论
1.RoR概念(残差网络的残差网络)
原始ResNet(左),RoR(右)
Original ResNet 显示在左上方,许多Res块级联在一起并形成一个非常深的网络。
在 Res块 中,有两条路径:
-
卷积路径,执行卷积以提取特征。
-
短连接方式将输入信号直接传输到下一层的连接路径。
利用短连接路径,可以减少梯度消失问题,因为在反向传播期间误差信号可以更容易地传播到前面的层。
上面右侧显示的RoR的建议,我们也可以在多个Res块上进行短连接。除此之外,我们还可以在一组“剩余块组”中建立另一级别的短连接。
作者认为:
-
RoR将学习问题转变为学习残差到残差映射,这比原始 ResNet 更简单,更容易学习。
-
并且上面的块中的层也可以将信息传播到下面块中的层。
2.RoR-:Level Number m
级别编号m介绍:
-
当m = 1时,RoR仅具有最终级短连接,即原始残差网络。
-
当m = 2时,RoR只有root-level(最外层)和最终级别的短连接。
-
当m = 3时,RoR具有根级别,中级和最终级别的连接。
对于中级连接,每个短连接将跨越具有相同数量的特征图的Res块。
对m = 4和5也进行了测试,但在论文中没有任何关于它的细节。结果与m = 3相比不够好。
3.RoR的不同版本
RoR-3使用原始ResNet(左),RoR-3使用Pre-ResNet或WRN(右)
如上图所示,RoR适应于不同版本的ResNet。
-
RoR-3:使用原始ResNet且m = 3的RoR
-
Pre-RoR-3:使用Pre-Activation ResNet且m = 3的RoR
-
RoR-3-WRN:使用WRN且m = 3的RoR
简而言之,RoR-3使用Conv-BN-ReLU。 Pre-RoR-3使用BN-ReLU-Conv,而WRN是更宽更浅的 Pre-RoR-3 。 (如果有兴趣,请阅读我对原始ResNet,P re-Activation ResNet和WRN的评论,见原文。)
4.结果
4.1三个数据集CIFAR-10, CIFAR-100, SVHN
-
CIFAR-10: 10类分类数据
-
CIFAR-100: 100类分类数据
-
SVHN: 街景房屋号数据集
CIFAR-10,CIFAR-100,SVHN数据集上的测试的错误率(%)
-
RoR-3-164:通过将RoR应用于164层原始ResNet,
(+ SD 表示使用随机深度,以减少过度拟合),分别获得CIFAR-10和CIFAR-100数据集的4.86%和 22.47%测试错误率。
(164是模型深度。)
-
Pre-RoR-3-164 + SD:通过用Pre-ResNet替换原始残差模块的RoR模型,分别获得CIFAR-10和CIFAR-100数据集的4.51%和21.94%测试错误率。
-
RoR-3-WRN40-4 + SD:通过用更宽的40层WRN40-4替换pre-ResNet,分别获得CIFAR-10和CIFAR-100数据集的4.09%和20.11%测试错误率。
-
RoR-3-WRN58-4 + SD:对于更深层的58层WRN-58-4,分别获得了CIFAR-10和CIFAR-100数据集的3.77%和19.73%的测试错误率。
4.2 ImageNet数据集
ImageNet:ILSVRC中的1000类的大规模数据集。
ImageNet数据集上的10个目标的Top1和Top5测试错误率(%)
RoR-3的不同层版本始终优于ResNet的不同层版本。本文中有详细的验证实验。如有兴趣,请访问论文。
使用长跳过连接和短跳过连接的类似方法也已应用于生物医学图像分割。希望我也可以下一次谈这个。
相关参考
[2018 TCSVT] [RoR]
Residual Networks of Residual Networks: Multilevel Residual Networks
我对图像分类的相关评论博文
[LeNet] [AlexNet] [ZFNet] [VGGNet] [SPPNet] [PReLU-Net] [GoogLeNet / Inception-v1] [BN-Inception / Inception-v2] [Inception-v3] [Inception-v4] [Xception] [MobileNetV1] [ResNet] [Pre-Activation ResNet] [RiR] [Stochastic Depth] [WRN] [DenseNet]
感谢 Ludovic Benistant.
想要继续查看该篇文章相关链接和参考文献? 雷锋网雷锋网 (公众号:雷锋网) 雷锋网
点击 【 RoR(ResNet of ResNet) - 用于图像分类的多级残差网络 】 或 长按下方地址访问 :
https://ai.yanxishe.com/page/TextTranslation/1526
Python中文书籍大集合
100本 Python 中文电子书,6份源代码,Python从入门到出家,一条龙服务。
包含Python基础、进阶、爬虫、算法实现、深度学习、TensorFlow、NLP等等
友情提示:文件大小为2.89GB,慎用流量下载,可以先收藏哟~~!
雷锋网原创文章,未经授权禁止转载。详情见 转载须知 。
以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网
猜你喜欢:- 【AI不惑境】残差网络的前世今生与原理
- ResNet架构可逆!多大等提出性能优越的可逆残差网络
- 使用 IBM SPSS 产品结合残差法实现发电机运行状态评估
- ECCV 2020 | GRNet: 用于稠密点云补全的网格化残差网络
- 告别规范化!MIT 谷歌等提出全新残差学习方法,效果惊艳
- 大幅减少GPU显存占用:可逆残差网络(The Reversible Residual Network)
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
ACM图灵奖演讲集
阿申豪斯特 / 苏运霖 / 电子工业出版社 / 2005-4 / 55.0
本书完整地收录了这些演讲,并配之以部分获奖者撰写的后记,旨在反映过去数年来这一领域中发生的变化。对任何一位计算机科学的历史与发展有兴趣的人来说,本书都极具收藏价值。 本文收录了自图灵奖开始颁发的1966年起到1985年这20年间图灵奖获得者在授奖大会上所做演讲的全文。由于在此期间有三次是把奖项同时授予两个人的,而其中有两次两位获奖者分别做了演讲,因此一共收录了22篇演讲稿。本书把这些演讲分为两大......一起来看看 《ACM图灵奖演讲集》 这本书的介绍吧!