由Redis的hGetAll函数所引发的一次服务宕机事件

栏目: IT技术 · 发布时间: 6年前

内容简介:由Redis的hGetAll函数所引发的一次服务宕机事件

昨晚通宵生产压测,终于算是将生产服务宕机的原因定位到了,心累。这篇博客,算作一个复盘和记录吧。。。

先来看看 Redis 的缓存淘汰算法思维导图:

由Redis的hGetAll函数所引发的一次服务宕机事件

说明:当实际占用的内存超过Redis配置的maxmemory时,Redis就会根据用户选择淘汰策略清除被选中的key。

业务场景:用户通过微信入口来访问一个页面;

测试场景:通过多线程模拟定量的并发来访问页面服务;

涉及架构:springsession+Redis集群,容器部署;

问题描述:固定并发数压测10分钟,压测开始后半小时,Redis连接数激增,连接耗尽,服务重启;

处理逻辑:

①、用户通过入口页面访问服务时,springsession给每个用户创建一个session,将key存储在Redis中;

②、Redis默认配置每隔半小时,利用hGetAll函数遍历session-key所在的集合,将最近一分钟内要过期的key全部delete,释放内存;

宕机原因:

①、Redis是单线程处理,由于高并发压测,产生了百万级的key存储在set集合中,当hGetAll函数遍历集合删除过期session的key时,大量用户连接失效;

②、失效瞬间,Redis需要创建大量连接,如果新建连接数超过了设置的最大连接数,则Redis服务容器健康检查不通过;

③、通过选举,Redis集群主从切换时需要将master的数据复制到salve;

④、主从复制时,Redis定位区域buffer(软链接)超时,最终导致服务宕机重启。

优化方案:

①、选择Redis默认淘汰策略,每秒钟选择10次,每次不超过25个,即每秒钟淘汰≤250个key;

缺点:内存耗用较高,需要通过横向扩展资源来应对该问题;

②、通过压测确定当前系统配置下的最大可处理阈值,通过网关限流、服务降级等措施来保障服务的稳定运行;

缺点:如果实际流量超过限流配置,则用户可能看到一些“友好界面”,用户体验不太好;

③、新建一个单独工程定期清理过期key,修改工程实例与Redis的消息订阅事件逻辑,降低OPS与client connect,Redis由哨兵改集群模式;

说明:方案③与方案②结合,可大大提高系统的可用性!!!

PS:在实际生产环境中,系统稳定性和可用性胜于一切!!!

相关参考:

Redis缓存淘汰算法

Redis的hGetAll函数的性能问题

以上就是此次问题复盘,虽然通宵带来的后遗症导致现在还有点迷糊,但从中学到了很多新的东西,值得思考与学习。。。

 


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

标签: redis hgetall

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Beginning Apache Struts

Beginning Apache Struts

Arnold Doray / Apress / 2006-02-20 / USD 44.99

Beginning Apache Struts will provide you a working knowledge of Apache Struts 1.2. This book is ideal for you Java programmers who have some JSP familiarity, but little or no prior experience with Ser......一起来看看 《Beginning Apache Struts》 这本书的介绍吧!

MD5 加密
MD5 加密

MD5 加密工具

SHA 加密
SHA 加密

SHA 加密工具

XML 在线格式化
XML 在线格式化

在线 XML 格式化压缩工具