由Redis的hGetAll函数所引发的一次服务宕机事件

栏目: IT技术 · 发布时间: 6年前

内容简介:由Redis的hGetAll函数所引发的一次服务宕机事件

昨晚通宵生产压测,终于算是将生产服务宕机的原因定位到了,心累。这篇博客,算作一个复盘和记录吧。。。

先来看看 Redis 的缓存淘汰算法思维导图:

由Redis的hGetAll函数所引发的一次服务宕机事件

说明:当实际占用的内存超过Redis配置的maxmemory时,Redis就会根据用户选择淘汰策略清除被选中的key。

业务场景:用户通过微信入口来访问一个页面;

测试场景:通过多线程模拟定量的并发来访问页面服务;

涉及架构:springsession+Redis集群,容器部署;

问题描述:固定并发数压测10分钟,压测开始后半小时,Redis连接数激增,连接耗尽,服务重启;

处理逻辑:

①、用户通过入口页面访问服务时,springsession给每个用户创建一个session,将key存储在Redis中;

②、Redis默认配置每隔半小时,利用hGetAll函数遍历session-key所在的集合,将最近一分钟内要过期的key全部delete,释放内存;

宕机原因:

①、Redis是单线程处理,由于高并发压测,产生了百万级的key存储在set集合中,当hGetAll函数遍历集合删除过期session的key时,大量用户连接失效;

②、失效瞬间,Redis需要创建大量连接,如果新建连接数超过了设置的最大连接数,则Redis服务容器健康检查不通过;

③、通过选举,Redis集群主从切换时需要将master的数据复制到salve;

④、主从复制时,Redis定位区域buffer(软链接)超时,最终导致服务宕机重启。

优化方案:

①、选择Redis默认淘汰策略,每秒钟选择10次,每次不超过25个,即每秒钟淘汰≤250个key;

缺点:内存耗用较高,需要通过横向扩展资源来应对该问题;

②、通过压测确定当前系统配置下的最大可处理阈值,通过网关限流、服务降级等措施来保障服务的稳定运行;

缺点:如果实际流量超过限流配置,则用户可能看到一些“友好界面”,用户体验不太好;

③、新建一个单独工程定期清理过期key,修改工程实例与Redis的消息订阅事件逻辑,降低OPS与client connect,Redis由哨兵改集群模式;

说明:方案③与方案②结合,可大大提高系统的可用性!!!

PS:在实际生产环境中,系统稳定性和可用性胜于一切!!!

相关参考:

Redis缓存淘汰算法

Redis的hGetAll函数的性能问题

以上就是此次问题复盘,虽然通宵带来的后遗症导致现在还有点迷糊,但从中学到了很多新的东西,值得思考与学习。。。

 


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

标签: redis hgetall

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

机器学习基础教程

机器学习基础教程

(英)Simon Rogers,、Mark Girolami / 郭茂祖、王春宇 刘扬 刘晓燕、刘扬、刘晓燕 / 机械工业出版社 / 2014-1 / 45.00

本书是一本机器学习入门教程,包含了数学和统计学的核心技术,用于帮助理解一些常用的机器学习算法。书中展示的算法涵盖了机器学习的各个重要领域:分类、聚类和投影。本书对一小部分算法进行了详细描述和推导,而不是简单地将大量算法罗列出来。 本书通过大量的MATLAB/Octave脚本将算法和概念由抽象的等式转化为解决实际问题的工具,利用它们读者可以重新绘制书中的插图,并研究如何改变模型说明和参数取值。......一起来看看 《机器学习基础教程》 这本书的介绍吧!

JS 压缩/解压工具
JS 压缩/解压工具

在线压缩/解压 JS 代码

RGB转16进制工具
RGB转16进制工具

RGB HEX 互转工具

HEX HSV 转换工具
HEX HSV 转换工具

HEX HSV 互换工具