内容简介:Rabin-Karp算法(也可以叫Karp-Rabin算法),由Richard M. Karp和Michael O. Rabin在1987年发表,它也是用来解决多模式串匹配问题的。它的实现方式有点与众不同,首先是计算两个字符串的哈希值,然后通过比较这两个哈希值的大小来判断是否出现匹配。选择一个合适的哈希函数很重要。假设文本串为
一:背景
Rabin-Karp算法(也可以叫Karp-Rabin算法),由Richard M. Karp和Michael O. Rabin在1987年发表,它也是用来解决多模式串匹配问题的。
它的实现方式有点与众不同,首先是计算两个字符串的哈希值,然后通过比较这两个哈希值的大小来判断是否出现匹配。
二:算法分析与实现
选择一个合适的哈希函数很重要。假设文本串为 t[0, n)
,模式串为 p[0, m)
,其中$0<m<n$,$Hash(t[i,j])$代表字符串 t[i, j]
的哈希值。
当$Hash(t[0, m-1])!=Hash(p[0,m-1])$时,我们很自然的会把$Hash(t[1, m])$拿过来继续比较。在这个过程中,若我们重新计算字符串 t[1, m]
的哈希值,还需要$O(n)$的时间复杂度,不划算。观察到字符串 t[0, m-1]
与 t[1, m]
中有$m-1$个字符是重合的,因此我们可以选用滚动哈希函数,那么重新计算的时间复杂度就降为$O(1)$。
Rabin-Karp算法选用的滚动哈希函数主要是利用 Rabin fingerprint
的思想,举个例子,计算字符串 t[0, m - 1]
的哈希值的公式如下,
$$
Hash(t[0, m-1])=t[0]\ast\,b^{m-1}+t[1]\ast\,b^{m-2}+...+t[m-1]\ast\,b^0\tag{t[0]代表该字符的ASCII码}
$$
其中的$b$是一个常数,在Rabin-Karp算法中,我们一般取值为$256$,因为一个字符的最大值不超过$255$。上面的公式还有一个问题,哈希值如果过大可能会溢出,因此我们还需要对其取模,这个值应该尽可能大,且是质数,这样可以减小哈希碰撞的概率,在这里我们就取$101$。
则计算字符串 t[1, m]
的哈希值公式如下,
$$
Hash(t[1,m])=(Hash(t[0,m-1])-t[0]\ast\,b^{m-1})\ast\,b+t[m]\ast\,b^0\tag{请仔细对比上式}
$$
完整代码如下,
#include <iostream> #include <string.h> using namespace std; #define BASE 256 #define MODULUS 101 void RabinKarp(char t[], char p[]) { int t_len = strlen(t); int p_len = strlen(p); // 哈希滚动之用 int h = 1; for (int i = 0; i < p_len - 1; i++) h = (h * BASE) % MODULUS; int t_hash = 0; int p_hash = 0; for (int i = 0; i < p_len; i++) { t_hash = (BASE * t_hash + t[i]) % MODULUS; p_hash = (BASE * p_hash + p[i]) % MODULUS; } int i = 0; while (i <= t_len - p_len) { // 考虑到哈希碰撞的可能性,还需要用 memcmp 再比对一下 if (t_hash == p_hash && memcmp(p, t + i, p_len) == 0) cout << p << " is found at index " << i << endl; // 哈希滚动 t_hash = (BASE * (t_hash - t[i] * h) + t[i + p_len]) % MODULUS; // 防止出现负数 if (t_hash < 0) t_hash = t_hash + MODULUS; i++; } } int main() { char t[100] = "It is a test, but not just a test"; char p[10] = "test"; RabinKarp(t, p); return 0; }
输出如下,
test is found at index 8 test is found at index 29
三:复杂度分析
首先看空间复杂度,很容易判断,$S(n)=O(1)$。
再来看时间复杂度,取文本串长度为$n$,模式串长度为$m$,预处理需要$O(m)$,在匹配过程中,最佳情况下,未出现哈希碰撞,$T_{best}(n)=O(n-m)$,最坏情况下,每次都出现碰撞,$T_{worst}(n)=O((n-m)*m)$,因为在现实生活中,$n$往往远大于$m$,因此最后的复杂度表格为,
$S(n)$ | $O(1)$ |
---|---|
$T_{best}(n)$ | $O(n)$ |
$T_{worst}(n)$ | $O(nm)$ |
以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网
猜你喜欢:- 通俗易懂--决策树算法、随机森林算法讲解(算法+案例)
- 限流算法之漏桶算法、令牌桶算法
- 什么是Paxos算法?Paxos算法是区块链核心算法之一
- 一文读懂对称加密算法、非对称加密算法和Hash算法
- 算法(六):图解贪婪算法
- 算法篇03:排序算法
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
游戏化革命:未来商业模式的驱动力
[美]盖布·兹彻曼、[美]乔斯琳·林德 / 应皓 / 中国人民大学出版社有限公司 / 2014-8-1 / CNY 59.00
第一本植入游戏化理念、实现APP互动的游戏化商业图书 游戏化与商业的大融合、游戏化驱动未来商业革命的权威之作 作者被公认为“游戏界的天才”,具有很高的知名度 亚马逊五星级图书 本书观点新颖,游戏化正成为最热门的商业新策略 游戏化是当今最热门的商业新策略,它能帮助龙头企业创造出前所未有的客户和员工的参与度。商业游戏化策略通过利用从游戏设计、忠诚度计划和行为经济学中所汲取......一起来看看 《游戏化革命:未来商业模式的驱动力》 这本书的介绍吧!