内容简介:继国际象棋、围棋、游戏等领域之后,人工智能首次在深度阅读理解超越人类。2019年3月8日,中国人工智能“国家队”
继国际象棋、围棋、游戏等领域之后,人工智能首次在深度阅读理解超越人类。
2019年3月8日,中国人工智能“国家队” 云从科技 和 上海交通大学 联合宣布,在 自然语言处理 (NLP Neuro-Linguistic Programming)上取得重大突破,在大型深层阅读理解任务数据集RACE数据集(ReAding Comprehension dataset collected from English Examinations)登顶第一,并成为世界首个超过人类排名的模型。
有评论认为,这会是机器深层理解人类语言的开端。
论文中,云从科技与上海交通大学基于原创DCMN算法,提出了一种全新的模型,使机器阅读理解正确率提高了 4.2个百分点 ,并在高中测试题部分 首次超越人类 (机器正确率69.8%、普通人类69.4%)。
这一研究成果,在应用领域搭配文字识别OCR/语音识别技术后,NLP将会帮助机器更好地理解人类文字/语言,并广泛应用于服务领域:帮助企业判断客户风险、审计内部文档合规、从语义层面查找相关信息;在社交软件、推荐引擎软件内辅助文字审阅工作,从枯燥的人工文字工作中 解放人类 。
突破语义理解瓶颈
此次云从科技和上海交通大学在自然语言处理(NLP)领域的深度阅读理解上登顶RACE排行榜第一名。RACE是一个来源于中学考试题目的大规模阅读理解数据集,包含了大约28000个文章以及近100000个问题。它的形式类似于英语考试中的阅读理解(选择题),给定一篇文章,通过阅读并理解文章(Passage),针对提出的问题(Question)从四个选项中选择正确的答案(Answers)。该题型的正确答案并不一定直接体现在文章中,只能从语义层面深入理解文章,通过分析文章中线索并基于上下文推理,选出正确答案。相对以往的抽取类阅读理解,算法要求更高,被认为是“ 深度阅读理解 ”。
RACE数据集的难点在于:由于正确答案并没有直接使用文章中的话术来回答,不能直接从文中检索得到答案。必须从语义层面深入理解文章,才能准确回答问题。
解决方案
怎么让机器在庞大的题库文章中(28000个)找到正确的答案?
云从科技与上海交通大学首创了一种P、Q、与A之间的匹配机制,称为Dual Co-Matching Network(简称DCMN),并基于这种机制探索性的研究了P、Q、与A的各种组合下的匹配策略。
结果显示,采用PQ_A的匹配策略,即先将P与Q连接,然后与A匹配,策略都得到了更优的结果。
再将模型(基于PQ_A策略)与其他已知的模型、以及纯粹基于BERT自身的模型进行了比较,得到如下的结果:
从RACE leaderboard上结果比较可以得到以下结论:
云从科技与上海交大的单体模型就已经超越榜单上所有的单体或Ensemble模型;
云从科技与上海交大的Ensemble模型在高中题目(RACE-H)部分优于人类结果(Turkers)。
论文缘起
这篇论文的作者,来自中国人工智能“国家队”云从科技与上海交通大学。
云从科技孵化于中国科学院,2017年3月,承担国家“人工智能”基础项目——“人工智能基础资源公共服务平台”建设任务。
2018年10月的国家“人工智能基础资源与公共服务平台”发布会上,云从科技创始人周曦提出了人工智能发展五个阶段,核心技术闭环是五个阶段的重要基础。
从感知到认知决策的一系列技术组成了核心技术闭环:
1-感知技术:人脸识别、语音识别、文字识别OCR、体态识别、跨镜追踪(ReID)、车辆识别等
2-认知决策: 自然语言处理(NLP) 、脑科学、大数据分析(风控、精准营销)等
目前,云从科技承担了国家发改委与工信部的人工智能基础平台、人工智能应用平台和人工智能的核心芯片平台项目,包含智能感知技术和认知决策技术为核心的技术闭环,并刷新多项世界纪录,保持自主核心技术国际领先。
在这个基础上,云从科技正在致力整合算力、智力、数据等资源及其成果,打造人工智能开放平台与生态,进一步促进人工智能在金融、安防、交通、零售、商业等重要行业的落地与深度融合。
附:论文解读
1.DCMN匹配机制
以P与Q之间的匹配为例,说明DCMN的匹配机制。下图为P与Q之间的DCMN匹配框架。
云从科技和上海交大使用目前NLP最新的研究成果BERT分别为P和Q中的每一个Token进行编码。基于BERT的编码,可以得到的编码是一个包含了P和Q中各自上下文信息的编码,而不是一个固定的静态编码,如上图中Hp与Hq;
其次,通过Attention的方式,实现P和Q的匹配。具体来讲,是构建P中的每一个Token在Q中的Attendances,即Question-Aware的Passage,如上图中Mp。这样得到的每一个P的Token编码,包含了与Question的匹配信息;
为了充分利用BERT带来的上下文信息,以及P与Q匹配后的信息,将P中每个Token的BERT编码Hp,与P中每个Token与Q匹配后的编码Mp进行融合, 对Hp和Mp进行了元素减法及乘法操作,通过一个激活函数,得到了P与Q的最终融合表示,图中表示为Spq;
最后通过maxpooling操作得到Cpq,l维向量,用于最后的loss计算。
2.各种匹配策略研究
除了P与A之间的匹配之外,还可以有Q与A、P与Q之间的匹配,以及不同匹配得到的匹配向量间的组合,这些不同的匹配与组合构成了不同的匹配策略。对七种不同的匹配策略分别进行了试验,以找到更加合适的匹配策略,分别是:
[P_Q; P_A; Q_A], [P_Q; P_A], [P_Q; Q_A], [P_A; Q_A], [PQ_A], [P_QA], [PA_Q]
“PA”表示先将P和A连接为一个序列,再参与匹配,“PQ”与“QA”同理。符号“[ ; ]”表示将多种匹配的结果组合在一起。[P_Q; P_A; Q_A]模式下的模型架构如下图:
7种不同策略通过试验,采用PQ_A的匹配策略,即先将P与Q连接,然后与A匹配,无论是在初中题目(RACE-M)、高中题目(RACE-H)还是整体(RACE),该策略都得到了更优的结果。
AI如何持续渗透平安城市?安防企业为何纷纷“进军”商业?智慧交通除了“大脑”还该关注什么?如何抓准家庭社区安全零散的市场?
2019年5月23/24日,亿欧将举办GIIS2019中国智慧城市峰会,本次峰会将延续前两次会的主题,邀请知名专家学者、行业龙头企业、标杆初创企业、知名投资人等,聚焦技术在智慧城市领域(平安城市、智能商业、智慧交通、家庭社区安全)的应用现状及未来发展。
活动链接: https://www.iyiou.com/post/ad/id/795
版权声明
本文来源亿欧,经亿欧授权发布,版权归原作者所有。转载或内容合作请点击转载说明,违规转载法律必究。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网
猜你喜欢:本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
现代密码学理论与实践
毛文波 / 电子工业出版社 / 2004-1 / 49.00元
现代密码学理论与实践,ISBN:9787505399259,作者:(英)Wenbo Mao著;王继林,伍前红等译;王继林译一起来看看 《现代密码学理论与实践》 这本书的介绍吧!