内容简介:业界 | Poseidon:高效的分布式深度学习通信架构
机器之心编译
参与:蒋思源、吴攀
近日,卡耐基梅隆大学(CMU)和 Petuum 推出了新一代高效的分布式深度学习通信架构 Poseidon。Poseidon 是一个易于使用,并能放大 DL 程序在 GPU 集群性能的通信架构。已存的 DL 程序不需要更改代码就能通过 Poseidon 在多个机器上自动最优地实现并行化,加速效果和机器数量呈线性增长关系。机器之心简要地介绍了该论文,详细内容请查看原论文。
论文: Poseidon: An Efficient Communication Architecture for Distributed Deep Learning on GPU Clusters
论文链接: https://arxiv.org/abs/1706.03292
深度学习模型在单 GPU 机器上可能需要花费数周的时间进行训练,因此将深度学习分布到 GPU 集群进行训练就显得十分重要了。然而相对于 CPU,拥有更大的吞吐量的 GPU 允许单位时间内处理更多的数据批量(batches),因此目前的分布式 DL 因为大量参数频繁地在网络中进行同步而表现不佳。
我们提出了 Poseidon,它是一个分布式 DL 在 GPU 上可实现高效通信的架构。Poseidon 利用深度程序中的层级模型结构而叠加通信与计算,这样以减少突发性网络通信。此外,Poseidon 使用混合的通信方案,并根据层级属性和机器数量优化每一层同步所要求的字节数。我们表明 Poseidon 能使 Caffe 和 TensorFlow 在 16 个单 GPU 机器上实现 15.5 倍的加速,而且该实验还是在有带宽限制(10GbE)并挑战 VGG19-22K 图像分类网络下完成的。此外,Poseidon 能使 TensorFlow 在 32 个单 GPU 机器上运行 Inception-V3 达到 31.5 倍的加速,相比于开源的 TensorFlow 实现 50% 的性能提升(20 倍加速)。
图1. 六层卷积神经网络
图 2:(a)参数服务器和(b)分布式 ML 的充分因子 broadcasting。
图 3:分布式环境中的(a)传统反向传播和(b)无等待(wait-free)反向传播。
表 2:用于参数同步的 Poseidon API。
图 4:Poseidon 架构的概览。
表 3:神经网络的评估。其中展示了单结点批量大小,这些批量大小是基于文献中的标准报告而选择的(通常最大的批量大小正好是 GPU 的内存大小)。
图 5:使用 Poseidon 平行化的 Caffe 和 40GbE 带宽训练的 GoogLeNet、VGG19 和 VGG19-22K,及它们训练时的吞吐量变化。单节点 Caffe 设置为基线(即加速=1)。
图 6:使用 Poseidon 平行化的 Caffe 和 40GbE 带宽训练的 Inception-V3、VGG19 和 VGG19-22K,及它们训练时的吞吐量变化。单节点 TensorFlow 设置为基线(即加速=1)。
图 7:在 8 个节点上使用不同系统训练三种网络的 GPU 计算分解和延迟时间。
图 8:使用 Poseidon 平行化的 Caffe 和不同网络带宽训练的 GoogLeNet、VGG19 和 VGG19-22K,及它们训练时的吞吐量变化。单节点 Caffe 设置为基线(即加速=1)。
图 9:(a)加速 vs. 节点数量和(b)使用 Poseidon TensorFlow 与原始 TensorFlow 训练 ResNet-152 的最佳测试误差 vs. epochs。
版权声明
本文仅代表作者观点,不代表百度立场。
阅读量: 0
0
0
以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网
猜你喜欢:- 『互联网架构』软件架构-分布式架构(14)
- 『互联网架构』软件架构-分布式系列并发编程(29)
- 『互联网架构』软件架构-解密电商系统-分布式session(77)
- 『互联网架构』软件架构-分布式之大型网站的演变过程(28)
- 分布式存储架构设计
- 分布式架构知识体系
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
Processing语言权威指南
Casey Reas、Ben Fry / 张静 / 电子工业出版社 / 2013-10-1 / 139.00
本书介绍了可视化艺术中的计算机编程概念,对开源编程语言Processing作了非常详尽的阐述。学生、艺术家、设计师、建筑师、研究者,以及任何想编程实现绘画、动画和互动的人都可以使用它。书中的大部分章节是短小的单元,介绍Processing的语法和基本概念(变量、函数、面向对象编程),涵盖与软件相关的图像处理、绘制,并且给出了大量简短的原型程序,配以相应的过程图像与注释。书中还有一些访谈文章,与动画......一起来看看 《Processing语言权威指南》 这本书的介绍吧!