golang之slice剖析

栏目: Go · 发布时间: 5年前

内容简介:切片是 Go 中的一种基本的数据结构,使用这种结构可以用来管理数据集合。切片的设计想法是由动态数组概念而来,为了开发者可以更加方便的使一个数据结构可以自动增加和减少。但是切片本身并不是动态数据或者数组指针。切片常见的操作有 reslice、append、copy。与此同时,切片还具有可索引,可迭代的优秀特性。在 Go 中,Go 数组是值类型,赋值和函数传参操作都会复制整个数组数据。打印结果:

一、概述

切片是 Go 中的一种基本的数据结构,使用这种结构可以用来管理数据集合。切片的设计想法是由动态数组概念而来,为了开发者可以更加方便的使一个数据结构可以自动增加和减少。但是切片本身并不是动态数据或者数组指针。切片常见的操作有 reslice、append、copy。与此同时,切片还具有可索引,可迭代的优秀特性。

1.切片和数组关于切片和数组怎么选择?

在 Go 中,Go 数组是值类型,赋值和函数传参操作都会复制整个数组数据。

1 func main() {  
 2    arrayA := [2]int{100, 200}  // 定义数组并初始化内容
 3    var arrayB [2]int // 定义一个数组
 4    arrayB = arrayA
 5    fmt.Printf("arrayA : %p , %v\n", &arrayA, arrayA)
 6    fmt.Printf("arrayB : %p , %v\n", &arrayB, arrayB)
 7    testArray(arrayA)
 8 }
 9 func testArray(x [2]int) {   // 此处使用值传递 会导致地址不同
10    fmt.Printf("func Array : %p , %v\n", &x, x)
11 }

打印结果:

arrayA : 0xc4200bebf0 , [100 200]  
arrayB : 0xc4200bec00 , [100 200]  
func Array : 0xc4200bec30 , [100 200]

可以看到,三个内存地址都不同,这也就验证了 Go 中数组赋值和函数传参都是值复制的。那这会导致什么问题呢?

假想每次传参都用数组,那么每次数组都要被复制一遍。如果数组大小有 100万,在64位机器上就需要花费大约 800W bytes,即 8MB 内存。这样会消耗掉大量的内存。于是乎有人想到,函数传参用数组的指针。

1 func main() {  
 2    arrayA := [2]int{100, 200}
 3    testArrayPoint(&arrayA)   // 1.传数组指针
 4    arrayB := arrayA[:]
 5    testArrayPoint(&arrayB)   // 2.传切片
 6    fmt.Printf("arrayA : %p , %v\n", &arrayA, arrayA)
 7 }
 8 func testArrayPoint(x *[]int) {  // 此处使用的指针,会导致函数参数和arrayB指向同一块内存
 9    fmt.Printf("func Array : %p , %v\n", x, *x)
10    (*x)[1] += 100
11 }

打印结果:

func Array : 0xc4200b0140 , [100 200] 
func Array : 0xc4200b0180 , [100 300]  
arrayA : 0xc4200b0140 , [100 400]

这也就证明了数组指针确实到达了我们想要的效果。现在就算是传入10亿的数组,也只需要再栈上分配一个8个字节的内存给指针就可以了。这样更加高效的利用内存,性能也比之前的好。

不过传指针会有一个弊端,从打印结果可以看到,第一行和第三行指针地址都是同一个,万一原数组的指针指向更改了,那么函数里面的指针指向都会跟着更改。

切片的优势也就表现出来了。用切片传数组参数,既可以达到节约内存的目的,也可以达到合理处理好共享内存的问题。打印结果第二行就是切片,切片的指针和原来数组的指针是不同的。

由此我们可以得出结论:

把第一个大数组传递给函数会消耗很多内存,采用切片的方式传参可以避免上述问题。切片是引用传递,所以它们不需要使用额外的内存并且比使用数组更有效率。但是,依旧有反例。

package bench_test

import "testing"

func array() [1024]int {
    var x [1024]int
    for i:=0; i<len(x);i++{
        x[i] = i
    }
    return x
}


func slice() []int{
    var x = make([]int, 1024)
    for i:=0; i<len(x);i++{
        x[i] = i
    }
    return x
}

func BenchmarkArray(b *testing.B){
    for i := 0; i < b.N; i++{
        array()
    }
}

func BenchmarkSlice(b *testing.B){
    for i := 0; i < b.N; i++{
        slice()
    }
}

//
// 虽然相对值传递,引用传递在给函数时不需要复制整个数据;但是并不以为所有的操作都需要使用slice 上面的例子是很好的验证
//

func array_param(x [81920]int) [81920]int {
    //var x [1024]int
    for i:=0; i<len(x);i++{
        x[i] = i
    }
    return x
}


func slice_param(x []int) []int{
    //var x = make([]int, 1024)
    for i:=0; i<len(x);i++{
        x[i] = i
    }
    return x
}

func BenchmarkArrayParam(b *testing.B){
    var x = [81920]int{}
    for i := 0; i < b.N; i++{
        array_param(x)
    }
}

func BenchmarkSliceParam(b *testing.B){
    var x = make([]int, 81920)
    for i := 0; i < b.N; i++{
        slice_param(x)
    }
}
//
// 当将数组和切片作为函数参数时 其对应的参数数据量越大 相对来说切片的的引用传递会凸显其优势
// 不过需要需要注意的slice会涉及在heap进行内存分配:
//      切片底层数组可能会在堆上分配内存,这样使用数组在stack进行拷贝未必弱于make的内存分配
//

我们做一次性能测试,并且禁用内联和优化,来观察切片的堆上内存分配的情况。

go test -bench . -benchmem -gcflags -N -l

输出结果比较“令人意外”:

goos: linux
goarch: amd64
pkg: gonotes/lesson-1/bench_test
BenchmarkArray-8                 1000000              1925 ns/op               0 B/op          0 allocs/op
BenchmarkSlice-8                  500000              4158 ns/op            8192 B/op          1 allocs/op
BenchmarkArrayParam-8              10000            182077 ns/op               0 B/op          0 allocs/op
BenchmarkSliceParam-8              10000            166897 ns/op              65 B/op          0 allocs/op
PASS
ok      gonotes/lesson-1/bench_test     7.589s

在测试 Array 的时候,用的是8核,循环次数是1000000,平均每次执行时间是1925 ns,每次执行堆上分配内存总量是0,分配次数也是0 。

而切片的结果就“差”一点,同样也是用的是8核,循环次数是500000,平均每次执行时间是4158 ns,但是每次执行一次,堆上分配内存总量是8192,分配次数也是1 。

并非所有时候都适合用切片代替数组,因为切片底层数组可能会在堆上分配内存,而且小数组在栈上拷贝的消耗也未必比 make 消耗大。

2.切片的数据结构

切片本身并不是动态数组或者数组指针。它内部实现的数据结构通过指针引用底层数组,设定相关属性将数据读写操作限定在指定的区域内。切片本身是一个只读对象,其工作机制类似数组指针的一种封装。

切片(slice)是对数组一个连续片段的引用,所以切片是一个引用类型(因此更类似于 C/C++ 中的数组类型,或者 java 中的 list 类型)。这个片段可以是整个数组,或者是由起始和终止索引标识的一些项的子集。需要注意的是,终止索引标识的项不包括在切片内。切片提供了一个与指向数组的动态窗口。

给定项的切片索引可能比相关数组的相同元素的索引小。和数组不同的是,切片的长度可以在运行时修改,最小为 0 最大为相关数组的长度:切片是一个长度可变的数组。

Slice 的数据结构定义如下:

type slice struct {      
  array unsafe.Pointer    
  len   int    
  cap   int
}

切片的结构体由3部分构成,Pointer 是指向一个数组的指针,len 代表当前切片的长度,cap 是当前切片的容量。cap 总是大于等于 len 的。

golang之slice剖析

slice

golang之slice剖析

内部结构

如果想从 slice 中得到一块内存地址,可以这样做:

s := make([]byte, 200)  
ptr := unsafe.Pointer(s[0])

如果反过来呢?从 Go 的内存地址中构造一个 slice。

var ptr unsafe.Pointer  
var s1 = struct {  
  addr uintptr4    
  len int5    
  cap int6 
}{ptr, length, length}
s := *(*[]byte)(unsafe.Pointer(s1))

构造一个虚拟的结构体,把 slice 的数据结构拼出来。

在 Go 的反射中就存在一个与之对应的数据结构 SliceHeader,我们可以用它来构造一个 slice

var o []byte  sliceHeader := (*reflect.SliceHeader)((unsafe.Pointer(o)))  
sliceHeader.Cap = length  
sliceHeader.Len = length  
sliceHeader.Data = uintptr(ptr)

3.创建切片

make 函数允许在运行期动态指定数组长度,绕开了数组类型必须使用编译期常量的限制。

创建切片有两种形式,make 创建切片,空切片。

3.1. make 和切片字面量

1 func makeslice(et *_type, len, cap int) slice {   // 创建slice方法
 2    // 根据切片的数据类型,获取切片的最大容量
 3    maxElements := maxSliceCap(et.size)
 4    // 比较切片的长度,长度值域应该在[0,maxElements]之间
 5    if len < 0 || uintptr(len) > maxElements {
 6        panic(errorString("makeslice: len out of range"))
 7    }
 8    // 比较切片的容量,容量值域应该在[len,maxElements]之间
 9    if cap < len || uintptr(cap) > maxElements {
10        panic(errorString("makeslice: cap out of range"))
11    }
12    // 根据切片的容量申请内存
13    p := mallocgc(et.size*uintptr(cap), et, true)
14    // 返回申请好内存的切片的首地址
15    return slice{p, len, cap}
16 }

还有一个 int64 的版本:

1 func makeslice64(et *_type, len64, cap64 int64) slice {  
 2    len := int(len64)
 3    if int64(len) != len64 {
 4        panic(errorString("makeslice: len out of range"))
 5    }
 6    cap := int(cap64)
 7    if int64(cap) != cap64 {
 8        panic(errorString("makeslice: cap out of range"))
 9    }
10    return makeslice(et, len, cap)
11 }

两个方法差别在于,只不过多了把 int64 转换成 int 这一步罢了。

golang之slice剖析

make操作方式

上图是用 make 函数创建的一个 len = 4, cap = 6 的切片。内存空间申请了6个 int 类型的内存大小。由于 len = 4,所以后面2个暂时访问不到,但是容量还是在的。这时候数组里面每个变量都是0 。

除了 make 函数可以创建切片以外,字面量也可以创建切片。

golang之slice剖析

字面量方式

这里是用字面量创建的一个 len = 6,cap = 6 的切片,这时候数组里面每个元素的值都初始化完成了。需要注意的是 [ ] 里面不要写数组的容量,因为如果写了个数以后就是数组了,而不是切片了。

golang之slice剖析

图片.png

还有一种简单的字面量创建切片的方法。如上图。上图就 Slice A 创建出了一个 len = 3,cap = 3 的切片。从原数组的第二位元素(0是第一位)开始切,一直切到第四位为止(不包括第五位)。同理,Slice B 创建出了一个 len = 2,cap = 4 的切片。

3.2. nil 和空切片

nil 切片和空切片也是常用的。

golang之slice剖析

空切片

nil 切片被用在很多标准库和内置函数中,描述一个不存在的切片的时候,就需要用到 nil 切片。比如函数在发生异常的时候,返回的切片就是 nil 切片。nil 切片的指针指向 nil。

空切片一般会用来表示一个空的集合。比如数据库查询,一条结果也没有查到,那么就可以返回一个空切片。

silce := make( []int , 0 )  
slice := []int{ }
golang之slice剖析

空切片

空切片和 nil 切片的区别在于,空切片指向的地址不是nil,指向的是一个内存地址,但是它没有分配任何内存空间,即底层元素包含0个元素。

最后需要说明的一点是。不管是使用 nil 切片还是空切片,对其调用内置函数 append,len 和 cap 的效果都是一样的。

4.切片扩容

当一个切片的容量满了,就需要扩容了。怎么扩,策略是什么?

1 func growslice(et *_type, old slice, cap int) slice {  
 2    if raceenabled {
 3        callerpc := getcallerpc(unsafe.Pointer(&et))
 4        racereadrangepc(old.array, uintptr(old.len*int(et.size)), callerpc,                  funcPC(growslice))
 5    }
 6    if msanenabled {
 7        msanread(old.array, uintptr(old.len*int(et.size)))
 8    }
 9    if et.size == 0 {
10        // 如果新要扩容的容量比原来的容量还要小,这代表要缩容了,那么可以直接报panic了。
11        if cap < old.cap {
12            panic(errorString("growslice: cap out of range"))
13        }
14        // 如果当前切片的大小为0,还调用了扩容方法,那么就新生成一个新的容量的切片返回。
15        return slice{unsafe.Pointer(&zerobase), old.len, cap}
16    }
17  // 这里就是扩容的策略
18    newcap := old.cap
19    doublecap := newcap + newcap
20    if cap > doublecap {
21        newcap = cap
22    } else {
23        if old.len < 1024 {
24            newcap = doublecap
25        } else {
26            for newcap < cap {
27                newcap += newcap / 4
28            }
29        }
30    }
31    // 计算新的切片的容量,长度。
32    var lenmem, newlenmem, capmem uintptr
33    const ptrSize = unsafe.Sizeof((*byte)(nil))
34    switch et.size {
35    case 1:
36        lenmem = uintptr(old.len)
37        newlenmem = uintptr(cap)
38        capmem = roundupsize(uintptr(newcap))
39        newcap = int(capmem)
40    case ptrSize:
41        lenmem = uintptr(old.len) * ptrSize
42        newlenmem = uintptr(cap) * ptrSize
43        capmem = roundupsize(uintptr(newcap) * ptrSize)
44        newcap = int(capmem / ptrSize)
45    default:
46        lenmem = uintptr(old.len) * et.size
47        newlenmem = uintptr(cap) * et.size
48        capmem = roundupsize(uintptr(newcap) * et.size)
49        newcap = int(capmem / et.size)
50    }
51    // 判断非法的值,保证容量是在增加,并且容量不超过最大容量
52    if cap < old.cap || uintptr(newcap) > maxSliceCap(et.size) {
53        panic(errorString("growslice: cap out of range"))
54    }
55    var p unsafe.Pointer
56    if et.kind&kindNoPointers != 0 {
57        // 在老的切片后面继续扩充容量
58        p = mallocgc(capmem, nil, false)
59        // 将 lenmem 这个多个 bytes 从 old.array地址 拷贝到 p 的地址处
60        memmove(p, old.array, lenmem)
61        // 先将 P 地址加上新的容量得到新切片容量的地址,然后将新切片容量地址后面的 capmem-newlenmem 个 bytes 这块内存初始化。为之后继续 append() 操作腾出空间。
62        memclrNoHeapPointers(add(p, newlenmem), capmem-newlenmem)
63    } else {
64        // 重新申请新的数组给新切片
65        // 重新申请 capmen 这个大的内存地址,并且初始化为0值
66        p = mallocgc(capmem, et, true)
67        if !writeBarrier.enabled {
68            // 如果还不能打开写锁,那么只能把 lenmem 大小的 bytes 字节从 old.array 拷贝到 p 的地址处
69            memmove(p, old.array, lenmem)
70        } else {
71            // 循环拷贝老的切片的值
72            for i := uintptr(0); i < lenmem; i += et.size {
73                typedmemmove(et, add(p, i), add(old.array, i))
74            }
75        }
76    }
77    // 返回最终新切片,容量更新为最新扩容之后的容量
78    return slice{p, old.len, newcap}
79 }

上述就是扩容的实现。主要需要关注的有两点,一个是扩容时候的策略,还有一个就是扩容是生成全新的内存地址还是在原来的地址后追加。

  1. 扩容策略

    先看看扩容策略。

1 func main() {  
2    slice := []int{10, 20, 30, 40}
3    newSlice := append(slice, 50)
4    fmt.Printf("Before slice = %v, Pointer = %p, len = %d, cap = %d\n", slice, &slice, len(slice), cap(slice))
5    fmt.Printf("Before newSlice = %v, Pointer = %p, len = %d, cap = %d\n", newSlice, &newSlice, len(newSlice), cap(newSlice))
6    newSlice[1] += 10
7    fmt.Printf("After slice = %v, Pointer = %p, len = %d, cap = %d\n", slice, &slice, len(slice), cap(slice))
8    fmt.Printf("After newSlice = %v, Pointer = %p, len = %d, cap = %d\n", newSlice, &newSlice, len(newSlice), cap(newSlice))
9 }

输出结果:

Before slice = [10 20 30 40], Pointer = 0xc4200b0140, len = 4, cap = 4  
Before newSlice = [10 20 30 40 50], Pointer = 0xc4200b0180, len = 5, cap = 8  
After slice = [10 20 30 40], Pointer = 0xc4200b0140, len = 4, cap = 4  
After newSlice = [10 30 30 40 50], Pointer = 0xc4200b0180, len = 5, cap = 8

用图表示出上述过程。

golang之slice剖析

执行过程

从图上我们可以很容易的看出,新的切片和之前的切片已经不同了,因为新的切片更改了一个值,并没有影响到原来的数组,新切片指向的数组是一个全新的数组。并且 cap 容量也发生了变化。这之间究竟发生了什么呢?

Go 中切片扩容的策略是这样的:

如果切片的容量小于 1024 个元素,于是扩容的时候就翻倍增加容量。上面那个例子也验证了这一情况,总容量从原来的4个翻倍到现在的8个。

一旦元素个数超过 1024 个元素,那么增长因子就变成 1.25 ,即每次增加原来容量的四分之一。

注意:扩容扩大的容量都是针对原来的容量而言的,而不是针对原来数组的长度而言的。

  1. 新数组 or 老数组 ?

    再谈谈扩容之后的数组一定是新的么?这个不一定,分两种情况。

情况一:

1 func main() {  
 2    array := [4]int{10, 20, 30, 40}
 3    slice := array[0:2]
 4    newSlice := append(slice, 50)
 5    fmt.Printf("Before slice = %v, Pointer = %p, len = %d, cap = %d\n", slice, &slice, len(slice), cap(slice))
 6    fmt.Printf("Before newSlice = %v, Pointer = %p, len = %d, cap = %d\n", newSlice, &newSlice, len(newSlice), cap(newSlice))
 7    newSlice[1] += 10
 8    fmt.Printf("After slice = %v, Pointer = %p, len = %d, cap = %d\n", slice, &slice, len(slice), cap(slice))
 9    fmt.Printf("After newSlice = %v, Pointer = %p, len = %d, cap = %d\n", newSlice, &newSlice, len(newSlice), cap(newSlice))
10    fmt.Printf("After array = %v\n", array)
11 }

打印输出:

Before slice = [10 20], Pointer = 0xc4200c0040, len = 2, cap = 4  
Before newSlice = [10 20 50], Pointer = 0xc4200c0060, len = 3, cap = 4  
After slice = [10 30], Pointer = 0xc4200c0040, len = 2, cap = 4  
After newSlice = [10 30 50], Pointer = 0xc4200c0060, len = 3, cap = 4  
After array = [10 30 50 40]

把上述过程用图表示出来,如下图。

golang之slice剖析

实例执行过程

通过打印的结果,我们可以看到,在这种情况下,扩容以后并没有新建一个新的数组,扩容前后的数组都是同一个,这也就导致了新的切片修改了一个值,也影响到了老的切片了。并且 append() 操作也改变了原来数组里面的值。一个 append() 操作影响了这么多地方,如果原数组上有多个切片,那么这些切片都会被影响!无意间就产生了莫名的 bug!

这种情况,由于原数组还有容量可以扩容,所以执行 append() 操作以后,会在原数组上直接操作,所以这种情况下,扩容以后的数组还是指向原来的数组。

这种情况也极容易出现在字面量创建切片时候,第三个参数 cap 传值的时候,如果用字面量创建切片,cap 并不等于指向数组的总容量,那么这种情况就会发生。

slice := array[1:2:3]

上面这种情况非常危险,极度容易产生 bug 。

建议用字面量创建切片的时候,cap 的值一定要保持清醒,避免共享原数组导致的 bug。

情况二:

情况二其实就是在扩容策略里面举的例子,在那个例子中之所以生成了新的切片,是因为原来数组的容量已经达到了最大值,再想扩容, Go 默认会先开一片内存区域,把原来的值拷贝过来,然后再执行 append() 操作。这种情况丝毫不影响原数组。

所以建议尽量避免情况一,尽量使用情况二,避免 bug 产生。

五. 切片拷贝

Slice 中拷贝方法有2个。

1 func slicecopy(to, fm slice, width uintptr) int {  
 2    // 如果源切片或者目标切片有一个长度为0,那么就不需要拷贝,直接 return 
 3    if fm.len == 0 || to.len == 0 {
 4        return 0
 5    }
 6    // n 记录下源切片或者目标切片较短的那一个的长度
 7    n := fm.len
 8    if to.len < n {
 9        n = to.len
10    }
11    // 如果入参 width = 0,也不需要拷贝了,返回较短的切片的长度
12    if width == 0 {
13        return n
14    }
15    // 如果开启了竞争检测
16    if raceenabled {
17        callerpc := getcallerpc(unsafe.Pointer(&to))
18        pc := funcPC(slicecopy)
19        racewriterangepc(to.array, uintptr(n*int(width)), callerpc, pc)
20        racereadrangepc(fm.array, uintptr(n*int(width)), callerpc, pc)
21    }
22    // 如果开启了 The memory sanitizer (msan)
23    if msanenabled {
24        msanwrite(to.array, uintptr(n*int(width)))
25        msanread(fm.array, uintptr(n*int(width)))
26    }
27    size := uintptr(n) * width
28    if size == 1 { 
29        // TODO: is this still worth it with new memmove impl?
30        // 如果只有一个元素,那么指针直接转换即可
31        *(*byte)(to.array) = *(*byte)(fm.array) // known to be a byte pointer
32    } else {
33        // 如果不止一个元素,那么就把 size 个 bytes 从 fm.array 地址开始,拷贝到 to.array 地址之后
34        memmove(to.array, fm.array, size)
35    }
36    return n
37 }

在这个方法中,slicecopy 方法会把源切片值(即 fm Slice )中的元素复制到目标切片(即 to Slice )中,并返回被复制的元素个数,copy 的两个类型必须一致。slicecopy 方法最终的复制结果取决于较短的那个切片,当较短的切片复制完成,整个复制过程就全部完成了。

golang之slice剖析

copy过程

举个例子,比如:

1 func main() {  
2    array := []int{10, 20, 30, 40}
3    slice := make([]int, 6)
4    n := copy(slice, array)
5    fmt.Println(n,slice)
6 }

还有一个拷贝的方法,这个方法原理和 slicecopy 方法类似,不在赘述了,注释写在代码里面了。

1 func slicestringcopy(to []byte, fm string) int {  
 2    // 如果源切片或者目标切片有一个长度为0,那么就不需要拷贝,直接 return 
 3    if len(fm) == 0 || len(to) == 0 {
 4        return 0
 5    }
 6    // n 记录下源切片或者目标切片较短的那一个的长度
 7    n := len(fm)
 8    if len(to) < n {
 9        n = len(to)
10    }
11    // 如果开启了竞争检测
12    if raceenabled {
13        callerpc := getcallerpc(unsafe.Pointer(&to))
14        pc := funcPC(slicestringcopy)
15        racewriterangepc(unsafe.Pointer(&to[0]), uintptr(n), callerpc, pc)
16    }
17    // 如果开启了 The memory sanitizer (msan)
18    if msanenabled {
19        msanwrite(unsafe.Pointer(&to[0]), uintptr(n))
20    }
21    // 拷贝字符串至字节数组
22    memmove(unsafe.Pointer(&to[0]), stringStructOf(&fm).str, uintptr(n))
23    return n
24 }

再举个例子,比如:

1 func main() {  
2    slice := make([]byte, 3)
3    n := copy(slice, "abcdef")
4    fmt.Println(n,slice)
5 }

输出:

13 [97,98,99]

说到拷贝,切片中有一个需要注意的问题。

1 func main() {  
2    slice := []int{10, 20, 30, 40}
3    for index, value := range slice {
4        fmt.Printf("value = %d , value-addr = %x , slice-addr = %x\n", value, &value, &slice[index])
5    }
6 }

输出:

value = 10 , value-addr = c4200aedf8 , slice-addr = c4200b0320  
value = 20 , value-addr = c4200aedf8 , slice-addr = c4200b0328  
value = 30 , value-addr = c4200aedf8 , slice-addr = c4200b0330  
value = 40 , value-addr = c4200aedf8 , slice-addr = c4200b0338

从上面结果我们可以看到,如果用 range 的方式去遍历一个切片,拿到的 Value 其实是切片里面的值拷贝。所以每次打印 Value 的地址都不变。

golang之slice剖析

vale的值拷贝

由于 Value 是值拷贝的,并非引用传递,所以直接改 Value 是达不到更改原切片值的目的的,需要通过slice[index] 获取真实的地址。

六、简单demo

package main

import (
    "fmt"
    "unsafe"
)

func main() {
    xx := []int{100, 200, 300, 400, 500, 600, 700, 800}
    xxx := xx[2:6]
    fmt.Printf("xx's address is %p, %v\n", &xx, xx)
    fmt.Printf("xxx's address is %p, %v\n", &xxx, xxx)

    xxx[2] += 1000 // 由于指向同一块内存会影响xx原有的内容
    fmt.Printf("after updated, xxx's address %p, %v\n", &xxx, xxx)
    fmt.Printf("after updated, xx's address %p, %v\n", &xx, xx)

    fmt.Println("======================================")
    x := make([]int,0 ,5)

    fmt.Println(unsafe.Pointer(&x))
    fmt.Printf("before append x's address =%p\n", &x)

    for i := 0; i<8; i++{
        x = append(x,i)
    }
    fmt.Printf("after append  x's address =%p\n", &x)
    fmt.Println(unsafe.Pointer(&x))

    fmt.Println("======================================")
    // 扩容都是在原有的地址上进行追加 也就会导致扩容前后内存地址是不变的
    slice1 := make([]int, 0)
    fmt.Printf("slice1's address is %p \n", &slice1)

    for i := 0; i<1024; i++{
        slice1 = append(slice1,i)
    }
    fmt.Printf("after append slice1's address is %p\n", &slice1)


    fmt.Println("======================================")
    // 扩容都是在原有的地址上进行追加 也就会导致扩容前后内存地址是不变的
    slice2 := []int{10,20,30,40}
    newslice := append(slice2, 50)
    fmt.Printf("slice2 address=%p, %v\n", &slice2, slice2)
    fmt.Printf("newslice address=%p, %v\n", &newslice, newslice)

    newslice[1] += 100
    fmt.Printf("After update,slice2 address=%p, %v\n", &slice2, slice2)
    fmt.Printf("After update,newslice address=%p, %v\n", &newslice, newslice)
}

//
// 空切片: make([]int, 0) / []int{} 代表创建容量为0的slice,故而其会指向一块内存地址,不过该内存地址没有分配任何空间的
// nil切片:地址为nil;
// 空切片和nil切片是不相同的;不过两者对调用内置函数 append,len 和 cap 的效果都是一样的。
//
// 当slice本身的容量已满的情况下 涉及到了扩容,只要会涉及如下内容
// 1、扩容策略
//   需要扩容的大小超过了原有大小的2*old_slice,则直接使用申请的大小
//   若是申请大小<=2*old_slice:
//     当old_slice < 1024 按照2*old_slice进行扩容
//     当old_slice >= 1024 按照1.25 * old_slice进行扩容
//  根据提供的扩容策略来计算新切片的容量和大小:
//      首先使用mallocgc在old后面进行扩充容量
//      其次见old内容copy到p地址处
//      最后得到新的切片容量地址 = P地址 + 新增扩容大小;初始化(capmem-newlenmen)间的内存地址初始化
// 2、在原有地址上进行追加(扩容的地址和原有的地址保持不变)
//   当申请的slice类型与old相同并且kind属于非pointer 则在old基础上进行追加mallogc
//   反之则重新申请新的底层数组给新的切片
//   首先重新申请新的数组给到新的切片:重新申请capmem的内存地址,并进行初始化
//   其次进行写锁检查:当写锁开启则通过循环copy老切片的内容;若是为开启写锁则只能将lenmen大小的字节从old数组copy到p的地址处
// 3、返回申请的slice大小
//

参考引用


以上所述就是小编给大家介绍的《golang之slice剖析》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

The Java Language Specification, Java SE 7 Edition

The Java Language Specification, Java SE 7 Edition

James Gosling、Bill Joy、Guy L. Steele Jr.、Gilad Bracha、Alex Buckley / Addison-Wesley Professional / 2013-2-24 / USD 59.99

Written by the inventors of the technology, The Java(r) Language Specification, Java SE 7 Edition, is the definitive technical reference for the Java programming language. The book provides complete, ......一起来看看 《The Java Language Specification, Java SE 7 Edition》 这本书的介绍吧!

在线进制转换器
在线进制转换器

各进制数互转换器

随机密码生成器
随机密码生成器

多种字符组合密码

HEX HSV 转换工具
HEX HSV 转换工具

HEX HSV 互换工具