内容简介:针对场景:
CREATE TABLE `t2` ( `id` INT(11) NOT NULL, `a` INT(11) DEFAULT NULL, `b` INT(11) DEFAULT NULL, PRIMARY KEY (`id`), KEY `a` (`a`) ) ENGINE=InnoDB; DROP PROCEDURE IF EXISTS idata; DELIMITER ;; CREATE PROCEDURE idata() BEGIN DECLARE i INT; SET i=1; WHILE (i <= 1000) DO INSERT INTO t2 VALUES (i,i,i); SET i=i+1; END WHILE; END;; DELIMITER ; CALL idata(); CREATE TABLE t1 LIKE t2; INSERT INTO t1 (SELECT * FROM t2 WHERE id<=100);
Index Nested-Loop Join
-- 使用JOIN,优化器可能会选择t1或t2作为驱动表 -- 使用STRAIGHT_JOIN,使用固定的连接关系,t1为驱动表,t2为被驱动表 SELECT * FROM t1 STRAIGHT_JOIN t2 ON (t1.a=t2.a); mysql> EXPLAIN SELECT * FROM t1 STRAIGHT_JOIN t2 ON (t1.a=t2.a); +----+-------------+-------+------------+------+---------------+------+---------+-----------+------+----------+-------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+-------+------------+------+---------------+------+---------+-----------+------+----------+-------------+ | 1 | SIMPLE | t1 | NULL | ALL | a | NULL | NULL | NULL | 100 | 100.00 | Using where | | 1 | SIMPLE | t2 | NULL | ref | a | a | 5 | test.t1.a | 1 | 100.00 | NULL | +----+-------------+-------+------------+------+---------------+------+---------+-----------+------+----------+-------------+
执行过程
- 从t1读取一行数据R
- 从R中取出字段a,然后到t2去查找
- 取出t2中满足条件的行,与R组成一行,作为结果集的一部分
- 重复上面步骤,直至遍历t1完毕
扫描行数
- 对驱动表t1做 全表扫描 ,需要扫描100行
- 对每一行R,根据字段a去t2查找,走的是树 搜索过程
- 构造的数据都是一一对应,总共扫描100行
- 因此,整个执行流程,总扫描行数为200行
# Time: 2019-03-10T11:06:13.271095Z # User@Host: root[root] @ localhost [] Id: 8 # Query_time: 0.001391 Lock_time: 0.000135 Rows_sent: 100 Rows_examined: 200 SET timestamp=1552215973; SELECT * FROM t1 STRAIGHT_JOIN t2 ON (t1.a=t2.a);
不使用Join
- 执行
SELECT * FROM t1
,扫描100行 - 循环遍历100行数据
$R.a SELECT * FROM t2 WHERE a=$R.a
- 对比Join
- 同样扫描了200行,但总共 执行了101条语句 ,客户端还需要 自己拼接 SQL语句和结果
选择驱动表
- 上面的查询语句, 驱动表走全部扫描 , 被驱动表走树搜索
- 假设被驱动表的行数为M
- 每次在被驱动表上查一行数据,需要先搜索 辅助索引a ,再搜索 主键索引
- 因此,在被驱动表上查一行的时间复杂度是 $2*\log_2 M$
- 假设驱动表的行数为N,需要扫描驱动表N行
- 整个执行过程,时间复杂度为 $N + N*2*\log_2 M$
- N对扫描行数的影响更大,因此选择 小表做驱动表
Simple Nested-Loop Join
SELECT * FROM t1 STRAIGHT_JOIN t2 ON (t1.a=t2.b);
- 被驱动表t2的字段b上 没有索引 ,因此每次到t2去做匹配的时候,都要做一次 全表扫描
- 按照上面的算法,时间复杂度为 $N + N*M$,总扫描行数为100,100次( 10W )
- 假如t1和t2都是10W行数据,那么总扫描次数为10,000,100,000次( 100亿 )
- 因此,MySQL本身没有使用
Simple Nested-Loop Join
算法
Block Nested-Loop Join
针对场景: 被驱动表上没有可用的索引
join_buffer充足
执行过程
- 把t1的数据读入线程内存
join_buffer
,执行的是SELECT *
,因此会把整个t1读入join_buffer
- 扫描t2,把t2中的每一行取出来,与
join_buffer
中的数据做对比- 如果满足join条件的行,作为结果集的一部分返回
-- 默认为256KB -- 4194304 Bytes == 4 MB mysql> SHOW VARIABLES LIKE '%join_buffer_size%'; +------------------+---------+ | Variable_name | Value | +------------------+---------+ | join_buffer_size | 4194304 | +------------------+---------+
EXPLAIN
mysql> EXPLAIN SELECT * FROM t1 STRAIGHT_JOIN t2 ON (t1.a=t2.b); +----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+----------------------------------------------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+----------------------------------------------------+ | 1 | SIMPLE | t1 | NULL | ALL | a | NULL | NULL | NULL | 100 | 100.00 | NULL | | 1 | SIMPLE | t2 | NULL | ALL | NULL | NULL | NULL | NULL | 1000 | 10.00 | Using where; Using join buffer (Block Nested Loop) | +----+-------------+-------+------------+------+---------------+------+---------+------+------+----------+----------------------------------------------------+ # Time: 2019-03-10T12:19:57.245356Z # User@Host: root[root] @ localhost [] Id: 8 # Query_time: 0.010132 Lock_time: 0.000192 Rows_sent: 100 Rows_examined: 1100 SET timestamp=1552220397; SELECT * FROM t1 STRAIGHT_JOIN t2 ON (t1.a=t2.b);
- 整个过程中,对t1和t2都做了一次 全表扫描 ,总扫描行数为 1100
- 由于
join_buffer
是 以无序数组 的方式组织的,因此对t2的每一行数据,都需要做100次判断- 因此,在内存中的总判断次数为100,000次
-
Simple Nested-Loop Join
的扫描行数也是100,000次, 时间复杂度是一样的- 但
Block Nested-Loop Join
的100,000次判断是 内存操作 , 速度会快很多 -
Simple Nested-Loop Join
可能会涉及 磁盘操作
- 但
选择驱动表
- 假设小表的行数为N,大表的行数为M
- 两个表都要做一次 全表扫描 ,总扫描行数为
M+N
- 内存中的判断次数是
M*N
- 此时,选择大表还是小表作为驱动表, 没有任何差异
join_buffer不足
-- 放不下t1的所有数据,采取分段放的策略 SET join_buffer_size=1200; # Time: 2019-03-10T12:30:32.194726Z # User@Host: root[root] @ localhost [] Id: 8 # Query_time: 0.009459 Lock_time: 0.000559 Rows_sent: 100 Rows_examined: 2100 SET timestamp=1552221032; SELECT * FROM t1 STRAIGHT_JOIN t2 ON (t1.a=t2.b);
执行过程
- 扫描t1,顺序读取数据行放入
join_buffer
,放完第88行后join_buffer
满,继续第2步 - 扫描t2,把t2中的每一行取出来,跟
join_buffer
中的数据做对比- 如果满足join条件的行,作为结果集的一部分返回
- 清空
join_buffer
(为了 复用 ,体现 Block 的核心思想) - 继续扫描t1,顺序取最后12行数据加入
join_buffer
,继续执行第2步
性能
- 由于t1被分成了两次加入
join_buffer
,导致t2会被扫描两次,因此总扫描行数为 2100 - 但是内存的判断次数还是不变的,依然是100,000次
选择驱动表
- 假设驱动表的数据行数为N,需要分K段才能完成算法流程,被驱动表的数据行数为M
join_buffer_size
- 扫描行数为 $N + \lambda*N*M$
- 减少N比减少M,扫描的行数会更小
- 因此选择 小表当驱动表
- 内存判断次数为 $N*M$( 无需考虑 )
- 如果要减少$\lambda$的值,可以加大
join_buffer_size
的值,一次性放入的行越多,分段就越少
小表
-- 恢复为默认值256KB SET join_buffer_size=262144;
过滤行数
t1为驱动表
mysql> EXPLAIN SELECT * FROM t1 STRAIGHT_JOIN t2 ON (t1.b=t2.b) WHERE t2.id<=50; +----+-------------+-------+------------+-------+---------------+---------+---------+------+------+----------+----------------------------------------------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+-------+------------+-------+---------------+---------+---------+------+------+----------+----------------------------------------------------+ | 1 | SIMPLE | t1 | NULL | ALL | NULL | NULL | NULL | NULL | 100 | 100.00 | NULL | | 1 | SIMPLE | t2 | NULL | range | PRIMARY | PRIMARY | 4 | NULL | 50 | 10.00 | Using where; Using join buffer (Block Nested Loop) | +----+-------------+-------+------------+-------+---------------+---------+---------+------+------+----------+----------------------------------------------------+ # Time: 2019-03-10T13:15:50.346563Z # User@Host: root[root] @ localhost [] Id: 8 # Query_time: 0.001006 Lock_time: 0.000162 Rows_sent: 50 Rows_examined: 150 SET timestamp=1552223750; SELECT * FROM t1 STRAIGHT_JOIN t2 ON (t1.b=t2.b) WHERE t2.id<=50;
t2为驱动表
join_buffer
只需要放入t2的前50行,因此 t2的前50行 相对于 t1的所有行 来说是一个 更小的表
mysql> EXPLAIN SELECT * FROM t2 STRAIGHT_JOIN t1 ON (t1.b=t2.b) WHERE t2.id<=50; +----+-------------+-------+------------+-------+---------------+---------+---------+------+------+----------+----------------------------------------------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+-------+------------+-------+---------------+---------+---------+------+------+----------+----------------------------------------------------+ | 1 | SIMPLE | t2 | NULL | range | PRIMARY | PRIMARY | 4 | NULL | 50 | 100.00 | Using where | | 1 | SIMPLE | t1 | NULL | ALL | NULL | NULL | NULL | NULL | 100 | 10.00 | Using where; Using join buffer (Block Nested Loop) | +----+-------------+-------+------------+-------+---------------+---------+---------+------+------+----------+----------------------------------------------------+ # Time: 2019-03-10T13:18:26.656339Z # User@Host: root[root] @ localhost [] Id: 8 # Query_time: 0.000965 Lock_time: 0.000150 Rows_sent: 50 Rows_examined: 150 SET timestamp=1552223906; SELECT * FROM t2 STRAIGHT_JOIN t1 ON (t1.b=t2.b) WHERE t2.id<=50;
优化器选择
-- 选择t2作为驱动表 mysql> EXPLAIN SELECT * FROM t1 JOIN t2 ON (t1.b=t2.b) WHERE t2.id<=50; +----+-------------+-------+------------+-------+---------------+---------+---------+------+------+----------+----------------------------------------------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+-------+------------+-------+---------------+---------+---------+------+------+----------+----------------------------------------------------+ | 1 | SIMPLE | t2 | NULL | range | PRIMARY | PRIMARY | 4 | NULL | 50 | 100.00 | Using where | | 1 | SIMPLE | t1 | NULL | ALL | NULL | NULL | NULL | NULL | 100 | 10.00 | Using where; Using join buffer (Block Nested Loop) | +----+-------------+-------+------------+-------+---------------+---------+---------+------+------+----------+----------------------------------------------------+
列数量
t1为驱动表
t1只查字段b,如果将t1放入 join_buffer
,只需要放入字段b的值
mysql> EXPLAIN SELECT t1.b,t2.* FROM t1 STRAIGHT_JOIN t2 ON (t1.b=t2.b) WHERE t2.id<=100; +----+-------------+-------+------------+-------+---------------+---------+---------+------+------+----------+----------------------------------------------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+-------+------------+-------+---------------+---------+---------+------+------+----------+----------------------------------------------------+ | 1 | SIMPLE | t1 | NULL | ALL | NULL | NULL | NULL | NULL | 100 | 100.00 | NULL | | 1 | SIMPLE | t2 | NULL | range | PRIMARY | PRIMARY | 4 | NULL | 100 | 10.00 | Using where; Using join buffer (Block Nested Loop) | +----+-------------+-------+------------+-------+---------------+---------+---------+------+------+----------+----------------------------------------------------+ # Time: 2019-03-10T13:23:55.558748Z # User@Host: root[root] @ localhost [] Id: 8 # Query_time: 0.002742 Lock_time: 0.000123 Rows_sent: 100 Rows_examined: 200 SET timestamp=1552224235; SELECT t1.b,t2.* FROM t1 STRAIGHT_JOIN t2 ON (t1.b=t2.b) WHERE t2.id<=100;
t2为驱动表
t2要查所有的字段,如果将t2放入 join_buffer
,要放入三个字段 id
、 a
和 b
,因此t1是 更小的表
mysql> EXPLAIN SELECT t1.b,t2.* FROM t2 STRAIGHT_JOIN t1 on (t1.b=t2.b) WHERE t2.id<=100; +----+-------------+-------+------------+-------+---------------+---------+---------+------+------+----------+----------------------------------------------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+-------+------------+-------+---------------+---------+---------+------+------+----------+----------------------------------------------------+ | 1 | SIMPLE | t2 | NULL | range | PRIMARY | PRIMARY | 4 | NULL | 100 | 100.00 | Using where | | 1 | SIMPLE | t1 | NULL | ALL | NULL | NULL | NULL | NULL | 100 | 10.00 | Using where; Using join buffer (Block Nested Loop) | +----+-------------+-------+------------+-------+---------------+---------+---------+------+------+----------+----------------------------------------------------+ # Time: 2019-03-10T13:24:51.561116Z # User@Host: root[root] @ localhost [] Id: 8 # Query_time: 0.002680 Lock_time: 0.000907 Rows_sent: 100 Rows_examined: 200 SET timestamp=1552224291; SELECT t1.b,t2.* FROM t2 STRAIGHT_JOIN t1 on (t1.b=t2.b) WHERE t2.id<=100;
优化器选择
-- 但优化器依然选择了t2作为驱动表 mysql> EXPLAIN SELECT t1.b,t2.* FROM t2 JOIN t1 on (t1.b=t2.b) WHERE t2.id<=100; +----+-------------+-------+------------+-------+---------------+---------+---------+------+------+----------+----------------------------------------------------+ | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra | +----+-------------+-------+------------+-------+---------------+---------+---------+------+------+----------+----------------------------------------------------+ | 1 | SIMPLE | t2 | NULL | range | PRIMARY | PRIMARY | 4 | NULL | 100 | 100.00 | Using where | | 1 | SIMPLE | t1 | NULL | ALL | NULL | NULL | NULL | NULL | 100 | 10.00 | Using where; Using join buffer (Block Nested Loop) | +----+-------------+-------+------------+-------+---------------+---------+---------+------+------+----------+----------------------------------------------------+
小结
选择驱动表时,应该是 按照各自的条件过滤 ,然后 计算参与join的各个字段的总数据量 ,数量量小的表,才是小表
常见问题
- 能否可以使用Join
- 如果使用
Index Nested-Loop Join
,即 用上了被驱动表上的索引 ,其实 问题不大 - 如果使用
Block Nested-Loop Join
, 扫描行数可能会过多 , 尽量避免使用 ,通过EXPLAIN
确认
- 如果使用
- 选择小表还是大表作为驱动表
- 如果使用
Index Nested-Loop Join
,选择 小表 作为驱动表 - 如果使用
Block Nested-Loop Join
-
join_buffer
充足时, 没有区别 -
join_buffer
不足时(更常见),选择 小表 作为驱动表
-
- 结论: 选择小表做驱动表
- 如果使用
转载请注明出处:http://zhongmingmao.me/2019/03/10/mysql-join/
访问原文「MySQL -- JOIN」获取最佳阅读体验并参与讨论
以上所述就是小编给大家介绍的《MySQL -- JOIN》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!
猜你喜欢:- MySQL -- JOIN
- MySQL -- JOIN优化
- MySQL Join的底层实现原理
- MySQL 的 join 功能弱爆了?
- MySQL 8.0.18 稳定版发布,Hash Join 如期而至
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。