YOLO Caffe模型转换BN的坑

栏目: 数据库 · 发布时间: 5年前

内容简介:YOLO虽好,但是Darknet框架实在是小众,有必要在Inference阶段将其转换为其他框架,以便后续统一部署和管理。Caffe作为小巧灵活的老资格框架,使用灵活,方便魔改,所以尝试将Darknet训练的YOLO模型转换为Caffe。这里简单记录下YOLO V3 原始Darknet模型转换为Caffe模型过程中的一个坑。以CPU代码为例,在Darknet中,BN做normalization的操作如下,可以看到,Darknet中的BN计算如下:

YOLO虽好,但是Darknet框架实在是小众,有必要在Inference阶段将其转换为其他框架,以便后续统一部署和管理。Caffe作为小巧灵活的老资格框架,使用灵活,方便魔改,所以尝试将Darknet训练的YOLO模型转换为Caffe。这里简单记录下YOLO V3 原始Darknet模型转换为Caffe模型过程中的一个坑。

Darknet中BN的计算

以CPU代码为例,在Darknet中,BN做normalization的操作如下, normalize_cpu

void normalize_cpu(float *x, float *mean, float *variance, int batch, int filters, int spatial)
{
    int b, f, i;
    for(b = 0; b < batch; ++b){
        for(f = 0; f < filters; ++f){
            for(i = 0; i < spatial; ++i){
                int index = b*filters*spatial + f*spatial + i;
                x[index] = (x[index] - mean[f])/(sqrt(variance[f]) + .000001f);
            }
        }
    }
}

可以看到,Darknet中的BN计算如下:

而且,$\epsilon$参数是固定的,为$1\times 10^{-6}$。

问题和解决

然而,在Caffe(以及大部分其他框架)中,$\epsilon$的位置是在根号里面的,也就是:

另外,查看 caffe.proto 可以知道,Caffe默认的$\epsilon$值为$1\times 10^{-5}$。

所以,在转换为caffe prototxt时,需要设置 batch_norm_param 如下:

batch_norm_param {
  use_global_stats: true
  eps: 1e-06
}

另外,需要重新求解$\sigma^2$,按照layer输出要相等的等量关系,可以求得:

def convert_running_var(var, eps=DARKNET_EPS):
    return np.square(np.sqrt(var) + eps) - eps

这里调整之后,转换后的Caffe模型和原始Darknet模型的输出误差已经是$1\times 10^{-7}$量级,可以认为转换成功。


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Effective C++中文版

Effective C++中文版

[美] Scott Meyers / 侯捷 / 华中科技大学出版社 / 2001-9 / 49.80元

Effective C++是世界顶级C++大师Scott Meyers的成名之作,初版于1991年。在国际上,这本书所引起的反响之大,波及整个计算机技术出版领域,余音至今未绝。几乎在所有C++书籍的推荐名单上,这部专著都会位于前三名。作者高超的技术把握力,独特的视角、诙谐轻松的写作风格、独具匠心的内容组织,都受到极大的推崇和仿效。 书中的50条准则,每一条都扼要说明了一个可让你写出更好的C+......一起来看看 《Effective C++中文版》 这本书的介绍吧!

JSON 在线解析
JSON 在线解析

在线 JSON 格式化工具

MD5 加密
MD5 加密

MD5 加密工具

html转js在线工具
html转js在线工具

html转js在线工具