如何在数据科学领域从起步到就业(附链接)

栏目: 数据库 · 发布时间: 5年前

内容简介:在您想进入一个新的领域工作时,会想到一个“先有鸡还是先有蛋”般的问题——没有工作经验是找不到工作的,然而没有工作是不会有工作经验的。我最近也遇到了这个问题,当时我正由R转用Python,并准备应聘一份需要Python的工作。现在我想分享一下我是怎样解决这个问题的。我一共经历了五个阶段,推荐大家也使用这种方法:首先你需要打好基础,这是一项必须靠自己完成的工作。自己找到或让别人推荐一个好的课程,跟随课程学习,遇到难题时可以到(https://stackoverflow.com)询问。刚开始你可能会碰到不礼貌的回

在您想进入一个新的领域工作时,会想到一个“先有鸡还是先有蛋”般的问题——没有工作经验是找不到工作的,然而没有工作是不会有工作经验的。我最近也遇到了这个问题,当时我正由R转用Python,并准备应聘一份需要 Python 的工作。现在我想分享一下我是怎样解决这个问题的。

我一共经历了五个阶段,推荐大家也使用这种方法:

1. 学好基础

首先你需要打好基础,这是一项必须靠自己完成的工作。自己找到或让别人推荐一个好的课程,跟随课程学习,遇到难题时可以到(https://stackoverflow.com)询问。刚开始你可能会碰到不礼貌的回复,但是别泄气,因为你必须学会如何在那里问问题。

这会教会你向那些“不是你肚子里蛔虫”的人清楚地表达你的想法和问题,提出好的问题是你今后职业生涯中必不可少的技能。

在这个阶段你可以将获得一项证书作为既定的目标。例如,当我开始学习大数据技术时,我报名参加了Cloudera的Spark和Hadoop开发人员考试。一些专业人士不喜欢这类证书,认为它们无益于实际工作,但我认为它们非常有用。尤其是在刚开始时,它们可以作为一个目标,一个关于学习什么内容和何时将这第一阶段标记为“完成”的方向。

2. 找到一个充满激情的项目

很多人可能会在被困在第一阶段——这是一个危险的陷阱。相反,应该试着尽快放下课程,创建一些你感兴趣的项目。课程可以教你基础知识,但它们通常无法有效激励你。但是如果你能专注于对你来说很重要的事情中,你会更快地解决问题并因此而学得更快。

如果你想不出一个好的项目,那就四处看看现有的项目、阅读博客,扩展你已有的知识。这可能需要一段时间,但努力是值得的。当然,你也应该将所使用的技术定位在你想要的工作类型上。

不要害怕你的前一两个项目做的很糟糕。这种情况有可能会发生,我确定我就是这样,而那些“大牛”可能也是这样的。让第三个项目真正成功的唯一方法就是做出前两个项目。做前两个项目是你最能学到东西的时候。

3. 展示你的项目,吸引别人的注意

  • 在当地会议上发言(参考https://meetup.com上简单的内容完成你第一个发言)

  • 在Hacker News发布你的项目(https://news.ycombinator.com/showhn.html)

  • 找到在你所在的地区的会议,并申请成为演讲者。对你的资历胡说八道(但不要说谎)是可以的,只要演讲本身有实质性内容并且值得让听众听到。

4. 贡献开源项目

在两个或三个个人项目之后,考虑为现有的大型开源项目做出贡献。向这些项目贡献代码是唯一从相当聪明的人那里获得反馈的方法,这些人很少做一对一的辅导。这是保持学习的最佳方式,但要达到这一水平需要一段时间。

5. 更新你的简历

将你参与的项目和演讲加入你的LinkedIn和/或Github简历中,并说明为什么你的项目是有意义的。你必须知道谁将阅读你的简历。对于招聘人员,你只需要把这个项目当作一个“正常”的工作来介绍。对于领域专家来说,只需说明这是一个没有报酬的项目,但要链接到你的Github存储库,也许还要提到它获得了多少收藏。

通过这种方法,你向你的潜在雇主发出了信号表明你有能力开始和完成一个项目,并且能够在一个团队中很好地协作。这就解决了开头提到的“先有鸡还是先有蛋”的问题。

祝你旅途愉快。有时你会感到沮丧,但终会有回报。

作者简介:Alexander Engelhardt ,在慕尼黑的LMU获得统计学理学硕士和博士学位,其后成为专门从事R语言机器学习的自由数据科学家。

Alexander Engelhardt:
http://www.alpha-epsilon.de/

相关资源:

On-line and web-based: Analytics, Data Mining, Data Science, Machine Learning education
https://www.kdnuggets.com/education/online.html
Software for Analytics, Data Science, Data Mining, and Machine Learning
https://www.kdnuggets.com/software/index.html

原本标题:

How to go from Zero to Employment in Data Science

原文链接:

https://www.kdnuggets.com/2019/01/from-zero-to-employment-data-science.html


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

众包

众包

杰夫·豪 / 牛文静 / 中信出版社 / 2009-6 / 36.00元

本书是继《长尾理论》之后的重要商业书籍。本书回答了《长尾理论》遗留的一大悬念。在长尾中作者详细阐述了长尾之所以成为可能的一个基础,但是没有详细解读,本书就是对这一悬念的详细回答,是《长尾理论》作者强力推荐的图书,在国际上引起了不小的轰动,“众包”这一概念也成为一个标准术语被商界广泛重视。本书大致分为三个部分,介绍众包的现在、过去和未来,解释了它的缘起、普遍性、力量以及商业上的适用性,通俗易懂,精彩......一起来看看 《众包》 这本书的介绍吧!

HTML 压缩/解压工具
HTML 压缩/解压工具

在线压缩/解压 HTML 代码

RGB转16进制工具
RGB转16进制工具

RGB HEX 互转工具

HSV CMYK 转换工具
HSV CMYK 转换工具

HSV CMYK互换工具