走近源码:神奇的 HyperLogLog

栏目: 数据库 · 发布时间: 5年前

HyperLogLog是 Redis 的高级数据结构,是统计基数的利器。前文我们已经介绍过HyperLogLog的基本用法,如果只求会用,只需要掌握HyperLogLog的三个命令即可,如果想要更进一步了解HyperLogLog的原理以及源码实现,相信这篇文章会给你带来一些启发。

基数

在数学上,基数或势,即集合中包含的元素的“个数”(参见势的比较),是日常交流中基数的概念在数学上的精确化(并使之不再受限于有限情形)。有限集合的基数,其意义与日常用语中的“基数”相同,例如{\displaystyle {a,b,c}}的基数是3。无限集合的基数,其意义在于比较两个集的大小,例如整数集和有理数集的基数相同;整数集的基数比实数集的小。

在介绍HyperLogLog的原理之前,请你先来思考一下,如果让你来统计基数,你会用什么方法。

Set

熟悉Redis数据结构的同学一定首先会想到Set这个结构,我们只需要把数据都存入Set,然后用scard命令就可以得到结果,这是一种思路,但是存在一定的问题。如果数据量非常大,那么将会耗费很大的内存空间,如果这些数据仅仅是用来统计基数,那么无疑是造成了巨大的浪费,因此,我们需要找到一种占用内存较小的方法。

bitmap

bitmap同样是一种可以统计基数的方法,可以理解为用bit数组存储元素,例如01101001,表示的是[1,2,4,8],bitmap中1的个数就是基数。bitmap也可以轻松合并多个集合,只需要将多个数组进行异或操作就可以了。bitmap相比于Set也大大节省了内存,我们来粗略计算一下,统计1亿个数据的基数,需要的内存是:100000000/8/1024/1024 ≈ 12M。

虽然bitmap在节省空间方面已经有了不错的表现,但是如果需要统计1000个对象,就需要大约12G的内存,显然这个结果仍然不能令我们满意。在这种情况下,HyperLogLog将会出来拯救我们。

HyperLogLog原理

HyperLogLog实际上不会存储每个元素的值,它使用的是概率算法,通过存储元素的hash值的第一个1的位置,来计算元素数量。这么说不太容易理解,容我先搬出来一个栗子。

有一天Jack和丫丫玩抛硬币的游戏,规则是丫丫负责抛硬币,每次抛到正面为一回合,丫丫可以自己决定进行几个回合。最后需要告诉Jack最长的那个回合抛了多少次,再由Jack来猜丫丫一共进行了几个回合。Jack心想:这可不好猜啊,我得算算概率了。于是在脑海中绘制这样一张图。

走近源码:神奇的 HyperLogLog
yb

k是每回合抛到1所用的次数,我们已知的是最大的k值,可以用k max 表示,由于每次抛硬币的结果只有0和1两种情况,因此,k max 在任意回合出现的概率即为(1/2) k max ,因此可以推测n=2 k max 。概率学把这种问题叫做伯努利实验。此时丫丫已经完成了n个回合,并且告诉Jack最长的一次抛了3次,Jack此时也胸有成竹,马上说出他的答案8,最后的结果是:丫丫只抛了一回合,Jack输了,要负责刷碗一个月。

终于,我们的Philippe Flajolet教授遇到了Jack一样的问题,他决心吸取Jack的教训,要让这个算法更加准确,于是引入了桶的概念,计算m个桶的加权平均值,这样就能得到比较准确的答案了(实际上还要进行其他修正)。最终的公式如图

走近源码:神奇的 HyperLogLog
HyperLogLog公式

其中m是桶的数量,const是修正常数,它的取值会根据m而变化。p=log 2 m

 1switch (p) {
 2   case 4:
 3       constant = 0.673 * m * m;
 4   case 5:
 5       constant = 0.697 * m * m;
 6   case 6:
 7       constant = 0.709 * m * m;
 8   default:
 9       constant = (0.7213 / (1 + 1.079 / m)) * m * m;
10}

我们回到Redis,对于一个输入的字符串,首先得到64位的hash值,用前14位来定位桶的位置(共有2 14 ,即16384个桶)。后面50位即为伯努利过程,每个桶有6bit,记录第一次出现1的位置count,如果count>oldcount,就用count替换oldcount。

了解原理之后,我们再来聊一下HyperLogLog的存储。HyperLogLog的存储结构分为密集存储结构和稀疏存储结构两种,默认为稀疏存储结构,而我们常说的占用12K内存的则是密集存储结构。

密集存储结构

密集存储比较简单,就是连续16384个6bit的串成的位图。由于每个桶是6bit,因此对桶的定位要麻烦一些。

 1#define HLL_BITS 6 /* Enough to count up to 63 leading zeroes. */
 2#define HLL_REGISTER_MAX ((1<<HLL_BITS)-1)
 3/* Store the value of the register at position 'regnum' into variable 'target'.
 4 * 'p' is an array of unsigned bytes. */
 5#define HLL_DENSE_GET_REGISTER(target,p,regnum) do { \
 6    uint8_t *_p = (uint8_t*) p; \
 7    unsigned long _byte = regnum*HLL_BITS/8; \
 8    unsigned long _fb = regnum*HLL_BITS&7; \
 9    unsigned long _fb8 = 8 - _fb; \
10    unsigned long b0 = _p[_byte]; \
11    unsigned long b1 = _p[_byte+1]; \
12    target = ((b0 >> _fb) | (b1 << _fb8)) & HLL_REGISTER_MAX; \
13} while(0)
14
15/* Set the value of the register at position 'regnum' to 'val'.
16 * 'p' is an array of unsigned bytes. */
17#define HLL_DENSE_SET_REGISTER(p,regnum,val) do { \
18    uint8_t *_p = (uint8_t*) p; \
19    unsigned long _byte = regnum*HLL_BITS/8; \
20    unsigned long _fb = regnum*HLL_BITS&7; \
21    unsigned long _fb8 = 8 - _fb; \
22    unsigned long _v = val; \
23    _p[_byte] &= ~(HLL_REGISTER_MAX << _fb); \
24    _p[_byte] |= _v << _fb; \
25    _p[_byte+1] &= ~(HLL_REGISTER_MAX >> _fb8); \
26    _p[_byte+1] |= _v >> _fb8; \
27} while(0)

如果我们要定位的桶编号为regnum,它的偏移字节量为(regnum * 6) / 8,起始bit偏移为(regnum * 6) % 8,例如,我们要定位编号为5的桶,字节偏移是3,位偏移也是6,也就是说,从第4个字节的第7位开始是编号为3的桶。这里需要注意,字节序和我们平时的字节序相反,因此需要进行倒置。我们用一张图来说明Redis是如何定位桶并且得到存储的值(即HLL_DENSE_GET_REGISTER函数的解释)。

走近源码:神奇的 HyperLogLog
桶定位

对于编号为5的桶,我们已经得到了字节偏移_byte和为偏移_fb,b0 >> _fb和b1 << _fb8操作是将字节倒置,然后进行拼接,并且保留最后6位。

稀疏存储结构

你以为Redis真的会用16384个6bit存储每一个HLL对象吗,那就too naive了,虽然它只占用了12K内存,但是Redis对于内存的节约已经到了丧心病狂的地步了。因此,如果比较多的计数值都是0,那么就会采用稀疏存储的结构。

对于连续多个计数值为0的桶,Redis使用的存储方式是:00xxxxxx,前缀两个0,后面6位的值加1表示有连续多少个桶的计数值为0,由于6bit最大能表示64个桶,所以Redis又设计了另一种表示方法:01xxxxxx yyyyyyyy,这样后面14bit就可以表示16384个桶了,而一个初始状态的HyperLogLog对象只需要用2个字节来存储。

如果连续的桶数都不是0,那么Redis的表示方式为1vvvvvxx,即为连续(xx+1)个桶的计数值都是(vvvvv+1)。例如,10011110表示连续3个8。这里使用5bit,最大只能表示32。因此,当某个计数值大于32时,Redis会将这个HyperLogLog对象调整为密集存储。

Redis用三条指令来表达稀疏存储的方式:

  1. ZERO:len 单个字节表示 00[len-1],连续最多64个零计数值

  2. VAL:value,len 单个字节表示 1[value-1][len-1],连续 len 个值为 value 的计数值

  3. XZERO:len 双字节表示 01[len-1],连续最多16384个零计数值

Redis从稀疏存储转换到密集存储的条件是:

  1. 任意一个计数值从 32 变成 33,因为VAL指令已经无法容纳,它能表示的计数值最大为 32

  2. 稀疏存储占用的总字节数超过 3000 字节,这个阈值可以通过 hll_sparse_max_bytes 参数进行调整。

源码解析

接下来通过源码来看一下pfadd和pfcount两个命令的具体流程。在这之前我们首先要了解的是HyperLogLog的头结构体和创建一个HyperLogLog对象的步骤。

HyperLogLog头结构体

1struct hllhdr {
2    char magic[4];      /* "HYLL" */
3    uint8_t encoding;   /* HLL_DENSE or HLL_SPARSE. */
4    uint8_t notused[3]; /* Reserved for future use, must be zero. */
5    uint8_t card[8];    /* Cached cardinality, little endian. */
6    uint8_t registers[]; /* Data bytes. */
7};

创建HyperLogLog对象

 1#define HLL_P 14 /* The greater is P, the smaller the error. */
 2#define HLL_REGISTERS (1<<HLL_P) /* With P=14, 16384 registers. */
 3#define HLL_SPARSE_XZERO_MAX_LEN 16384
 4
 5
 6#define HLL_SPARSE_XZERO_SET(p,len) do { \
 7    int _l = (len)-1; \
 8    *(p) = (_l>>8) | HLL_SPARSE_XZERO_BIT; \
 9    *((p)+1) = (_l&0xff); \
10} while(0)
11
12/* Create an HLL object. We always create the HLL using sparse encoding.
13 * This will be upgraded to the dense representation as needed. */
14robj *createHLLObject(void) {
15    robj *o;
16    struct hllhdr *hdr;
17    sds s;
18    uint8_t *p;
19    int sparselen = HLL_HDR_SIZE +
20                    (((HLL_REGISTERS+(HLL_SPARSE_XZERO_MAX_LEN-1)) /
21                     HLL_SPARSE_XZERO_MAX_LEN)*2);
22    int aux;
23
24    /* Populate the sparse representation with as many XZERO opcodes as
25     * needed to represent all the registers. */
26    aux = HLL_REGISTERS;
27    s = sdsnewlen(NULL,sparselen);
28    p = (uint8_t*)s + HLL_HDR_SIZE;
29    while(aux) {
30        int xzero = HLL_SPARSE_XZERO_MAX_LEN;
31        if (xzero > aux) xzero = aux;
32        HLL_SPARSE_XZERO_SET(p,xzero);
33        p += 2;
34        aux -= xzero;
35    }
36    serverAssert((p-(uint8_t*)s) == sparselen);
37
38    /* Create the actual object. */
39    o = createObject(OBJ_STRING,s);
40    hdr = o->ptr;
41    memcpy(hdr->magic,"HYLL",4);
42    hdr->encoding = HLL_SPARSE;
43    return o;
44}

这里sparselen=HLL_HDR_SIZE+2,因为初始化时默认所有桶的计数值都是0。其他过程不难理解,用的存储方式是我们前面提到过的稀疏存储,创建的对象实质上是一个字符串对象,这也是字符串命令可以操作HyperLogLog对象的原因。

PFADD命令

 1/* PFADD var ele ele ele ... ele => :0 or :1 */
 2void pfaddCommand(client *c) {
 3    robj *o = lookupKeyWrite(c->db,c->argv[1]);
 4    struct hllhdr *hdr;
 5    int updated = 0, j;
 6
 7    if (o == NULL) {
 8        /* Create the key with a string value of the exact length to
 9         * hold our HLL data structure. sdsnewlen() when NULL is passed
10         * is guaranteed to return bytes initialized to zero. */
11        o = createHLLObject();
12        dbAdd(c->db,c->argv[1],o);
13        updated++;
14    } else {
15        if (isHLLObjectOrReply(c,o) != C_OK) return;
16        o = dbUnshareStringValue(c->db,c->argv[1],o);
17    }
18    /* Perform the low level ADD operation for every element. */
19    for (j = 2; j < c->argc; j++) {
20        int retval = hllAdd(o, (unsigned char*)c->argv[j]->ptr,
21                               sdslen(c->argv[j]->ptr));
22        switch(retval) {
23        case 1:
24            updated++;
25            break;
26        case -1:
27            addReplySds(c,sdsnew(invalid_hll_err));
28            return;
29        }
30    }
31    hdr = o->ptr;
32    if (updated) {
33        signalModifiedKey(c->db,c->argv[1]);
34        notifyKeyspaceEvent(NOTIFY_STRING,"pfadd",c->argv[1],c->db->id);
35        server.dirty++;
36        HLL_INVALIDATE_CACHE(hdr);
37    }
38    addReply(c, updated ? shared.cone : shared.czero);
39}

PFADD命令会先判断key是否存在,如果不存在,则创建一个新的HyperLogLog对象;如果存在,会调用isHLLObjectOrReply()函数检查这个对象是不是HyperLogLog对象,检查方法主要是检查魔数是否正确,存储结构是否正确以及头结构体的长度是否正确等。

一切就绪后,才可以调用hllAdd()函数添加元素。hllAdd函数很简单,只是根据存储结构判断需要调用hllDenseAdd()函数还是hllSparseAdd()函数。

密集存储结构只是比较新旧计数值,如果新计数值大于就计数值,就将其替代。

而稀疏存储结构要复杂一些:

  1. 判断是否需要调整为密集存储结构,如果不需要则继续进行,否则就先调整为密集存储结构,然后执行添加操作

  2. 我们需要先定位要修改的字节段,通过循环计算每一段表示的桶的范围是否包括要修改的桶

  3. 定位到桶后,如果这个桶已经是VAL,并且计数值大于当前要添加的计数值,则返回0,如果小于当前计数值,就进行更新

  4. 如果是ZERO,并且长度为1,那么可以直接把它替换为VAL,并且设置计数值

  5. 如果不是上述两种情况,则需要对现有的存储进行拆分

PFCOUNT命令

 1/* PFCOUNT var -> approximated cardinality of set. */
 2void pfcountCommand(client *c) {
 3    robj *o;
 4    struct hllhdr *hdr;
 5    uint64_t card;
 6
 7    /* Case 1: multi-key keys, cardinality of the union.
 8     *
 9     * When multiple keys are specified, PFCOUNT actually computes
10     * the cardinality of the merge of the N HLLs specified. */
11    if (c->argc > 2) {
12        uint8_t max[HLL_HDR_SIZE+HLL_REGISTERS], *registers;
13        int j;
14
15        /* Compute an HLL with M[i] = MAX(M[i]_j). */
16        memset(max,0,sizeof(max));
17        hdr = (struct hllhdr*) max;
18        hdr->encoding = HLL_RAW; /* Special internal-only encoding. */
19        registers = max + HLL_HDR_SIZE;
20        for (j = 1; j < c->argc; j++) {
21            /* Check type and size. */
22            robj *o = lookupKeyRead(c->db,c->argv[j]);
23            if (o == NULL) continue; /* Assume empty HLL for non existing var.*/
24            if (isHLLObjectOrReply(c,o) != C_OK) return;
25
26            /* Merge with this HLL with our 'max' HHL by setting max[i]
27             * to MAX(max[i],hll[i]). */
28            if (hllMerge(registers,o) == C_ERR) {
29                addReplySds(c,sdsnew(invalid_hll_err));
30                return;
31            }
32        }
33
34        /* Compute cardinality of the resulting set. */
35        addReplyLongLong(c,hllCount(hdr,NULL));
36        return;
37    }
38
39    /* Case 2: cardinality of the single HLL.
40     *
41     * The user specified a single key. Either return the cached value
42     * or compute one and update the cache. */
43    o = lookupKeyWrite(c->db,c->argv[1]);
44    if (o == NULL) {
45        /* No key? Cardinality is zero since no element was added, otherwise
46         * we would have a key as HLLADD creates it as a side effect. */
47        addReply(c,shared.czero);
48    } else {
49        if (isHLLObjectOrReply(c,o) != C_OK) return;
50        o = dbUnshareStringValue(c->db,c->argv[1],o);
51
52        /* Check if the cached cardinality is valid. */
53        hdr = o->ptr;
54        if (HLL_VALID_CACHE(hdr)) {
55            /* Just return the cached value. */
56            card = (uint64_t)hdr->card[0];
57            card |= (uint64_t)hdr->card[1] << 8;
58            card |= (uint64_t)hdr->card[2] << 16;
59            card |= (uint64_t)hdr->card[3] << 24;
60            card |= (uint64_t)hdr->card[4] << 32;
61            card |= (uint64_t)hdr->card[5] << 40;
62            card |= (uint64_t)hdr->card[6] << 48;
63            card |= (uint64_t)hdr->card[7] << 56;
64        } else {
65            int invalid = 0;
66            /* Recompute it and update the cached value. */
67            card = hllCount(hdr,&invalid);
68            if (invalid) {
69                addReplySds(c,sdsnew(invalid_hll_err));
70                return;
71            }
72            hdr->card[0] = card & 0xff;
73            hdr->card[1] = (card >> 8) & 0xff;
74            hdr->card[2] = (card >> 16) & 0xff;
75            hdr->card[3] = (card >> 24) & 0xff;
76            hdr->card[4] = (card >> 32) & 0xff;
77            hdr->card[5] = (card >> 40) & 0xff;
78            hdr->card[6] = (card >> 48) & 0xff;
79            hdr->card[7] = (card >> 56) & 0xff;
80            /* This is not considered a read-only command even if the
81             * data structure is not modified, since the cached value
82             * may be modified and given that the HLL is a Redis string
83             * we need to propagate the change. */
84            signalModifiedKey(c->db,c->argv[1]);
85            server.dirty++;
86        }
87        addReplyLongLong(c,card);
88    }
89}

如果要计算多个HyperLogLog的基数,则需要将多个HyperLogLog对象合并,这里合并方法是将所有的HyperLogLog对象合并到一个名为max的对象中,max采用的是密集存储结构,如果被合并的对象也是密集存储结构,则循环比较每一个计数值,将大的那个存入max。如果被合并的是稀疏存储,则只需要比较VAL即可。

如果计算单个HyperLogLog对象的基数,则先判断对象头结构体中的基数缓存是否有效,如果有效,可直接返回。如果已经失效,则需要重新计算基数,并修改原有缓存,这也是PFCOUNT命令不被当做只读命令的原因。

结语

最后,给大家推荐一个帮助理解HyperLogLog原理的工具:http://content.research.neustar.biz/blog/hll.html,有兴趣的话可以去学习一下。

走近源码:神奇的 HyperLogLog

英文比较好的同学可以直接点击 阅读原文 阅读antirez的关于HyperLogLogd 博客。


以上所述就是小编给大家介绍的《走近源码:神奇的 HyperLogLog》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

商战

商战

杰克•特劳特、阿尔•里斯 / 李正栓、李腾 / 机械工业出版社 / 2011-3 / 42.00元

本书重点阐述了商战中的四种常用战略形式,如防御战、进攻战、侧翼战和游击战,针对每一种形式又提出了三条应遵循的原则,以及如何在具体的商战中应用这些原则。本书分析了商战中的实际案例:可口可乐与百事可乐的战役,汉堡王与温迪斯对麦当劳的挑战以及DEC对阵IBM等。这些人们熟知品牌的案例在作者精心的组织下,使读者不仅加深了对本书中心思想的理解,而且学习了如何在实战中具体应用各种营销战略和策略的技巧。 ......一起来看看 《商战》 这本书的介绍吧!

JSON 在线解析
JSON 在线解析

在线 JSON 格式化工具

MD5 加密
MD5 加密

MD5 加密工具

XML、JSON 在线转换
XML、JSON 在线转换

在线XML、JSON转换工具