ECMAScript 6 学习笔记(六):函数的扩展
栏目: JavaScript · 发布时间: 5年前
内容简介:ES6 之前,想要为函数指定默认值只能采用如下的办法:ES6 允许为函数的参数设置默认值,即直接写在参数定义的后面。参数默认值可以与解构赋值的默认值,结合起来使用。
函数参数的默认值
ES6 之前,想要为函数指定默认值只能采用如下的办法:
function f(a, b) { a = a || 0; // 方法1 b = typeof b == "undefined" ? 0 : b; // 方法2 return a + b; }
ES6 允许为函数的参数设置默认值,即直接写在参数定义的后面。
function log(x, y = 'World') { console.log(x, y); } log('Hello') // Hello World log('Hello', 'China') // Hello China log('Hello', '') // Hello
参数默认值可以与解构赋值的默认值,结合起来使用。
function foo({x, y = 0}) { console.log(x, y); } foo({}) // undefined 0 foo({x: 1}) // 1 0 foo({x: 1, y: 2}) // 1 2 foo() // TypeError: Cannot read property 'x' of undefined
上面代码没有使用函数参数的默认值,如果函数 foo 调用时没提供参数,变量 x 和 y 就不会生成,从而报错。通过提供函数参数的默认值,就可以避免这种情况:
function foo({x = 0, y = 0} = {}) { console.log(x, y); } foo() // 0 0 foo({}) // 0 0 foo({x: 1}) // 1 0 foo({x: 1, y: 2}) // 1 2
但是要注意,使用解构赋值默认值时要注意默认值的位置:
function foo({x, y} = {x: 0, y: 0}) { console.log(x, y); } foo() // 0 0 foo({}) // undefined undefined foo({x: 1}) // 1 undefined foo({x: 1, y: 2}) // 1 2
如上所示,第一种情况下,当函数没有指定参数时,默认值是空对象“{}”,参数为“{}”时,默认值就是“{x = 0, y = 0}”;而第二种情况,函数没有指定参数时,默认值是对象“{x = 0, y = 0}”,参数为“{}”时,默认值是“{x, y}”,相当于没有指定默认值,因此会出现 undefined。
除此之外,还需注意,尽量把有默认值的参数作为函数的尾参数,因为如果非尾部的参数设置默认值,这个参数是没法省略的:
function f(x = 1, y) { return [x, y]; } f() // [1, undefined] f(2) // [2, undefined]) f(, 1) // 报错 f(undefined, 1) // [1, 1]
函数的 length 属性
指定了默认值以后,函数的 length 属性,将返回没有指定默认值的参数个数,即函数至少需要传入的参数个数。因此某个参数指定默认值以后,预期传入的参数个数就不包括这个参数了。
(function (a) {}).length // 1 (function (a = 5) {}).length // 0 (function (a = 0, b, c) {}).length // 0
作用域
一旦设置了参数的默认值,函数进行声明初始化时,参数会形成一个单独的作用域(context)。等到初始化结束,这个作用域就会消失。这种语法行为,在不设置参数默认值时,是不会出现的。
var x = 1; function f(x, y = x) { console.log(y); } f(2) // 2
如果变量 x 本身没有定义,则指向外层的全局变量 x。函数调用时,函数体内部的局部变量 x 影响不到默认值变量 x。如果此时,全局变量 x 不存在,就会报错。
let x = 1; function f(y = x) { let x = 2; console.log(y); } f() // 1
rest 参数
ES6 引入 rest 参数(形式为…变量名),用于获取函数的多余参数,这样就不需要使用arguments对象了。rest 参数搭配的变量是一个数组,该变量将多余的参数放入数组中。需要注意的是,rest 参数之后不能再有其他参数(即只能是最后一个参数),否则会报错。同时,函数的 length 属性,不包括 rest 参数。
function add(...values) { let sum = 0; for (var val of values) { sum += val; } return sum; } add(2, 5, 3) // 10
一个例子:
// arguments变量的写法 function sortNumbers() { return Array.prototype.slice.call(arguments).sort(); } // rest参数的写法 const sortNumbers = (...numbers) => numbers.sort();
严格模式
从 ES5 开始,函数内部可以设定为严格模式。ES2016 做了一点修改,规定只要函数参数使用了默认值、解构赋值、或者扩展运算符,那么函数内部就不能显式设定为严格模式,否则会报错。这样规定的原因是,函数内部的严格模式,同时适用于函数体和函数参数。但是,函数执行的时候,先执行函数参数,然后再执行函数体。这样就有一个不合理的地方,只有从函数体之中,才能知道参数是否应该以严格模式执行,但是参数却应该先于函数体执行。
两种方法可以规避这种限制。第一种是设定全局性的严格模式,这是合法的。第二种是把函数包在一个无参数的立即执行函数里面。
const doSomething = (function () { 'use strict'; return function(value = 42) { return value; }; }());
name 属性
函数的 name 属性,返回该函数的函数名。ES6 对这个属性的行为做出了一些修改。如果将一个匿名函数赋值给一个变量,ES5 的 name 属性,会返回空字符串,而 ES6 的 name 属性会返回实际的函数名。
var f = function () {}; // ES5 f.name // "" // ES6 f.name // "f"
Function 构造函数返回的函数实例,name 属性的值为 anonymous。bind 返回的函数,name 属性值会加上 bound 前缀。
(new Function).name // "anonymous" (function(){}).bind({}).name // "bound "
箭头函数
var f = v => v; // 等同于 var f = function (v) { return v }; var f = () => 5; // 等同于 var f = function () { return 5 }; var sum = (num1, num2) => num1 + num2; // 等同于 var sum = function(num1, num2) { return num1 + num2; };
如果箭头函数的代码块部分多于一条语句,就要使用大括号将它们括起来,并且使用 return 语句返回。由于大括号被解释为代码块,所以如果箭头函数直接返回一个对象,必须在对象外面加上括号,否则会报错。
var sum = (num1, num2) => { return num1 + num2; } let getTempItem = id => { id: id, name: "Temp" }; // 报错 let getTempItem = id => ({ id: id, name: "Temp" }); // 不报错
如果箭头函数只有一行语句,且不需要返回值,可以采用下面的写法。
let fn = () => void doesNotReturn();
箭头函数可以与变量解构结合使用。
const full = ({ first, last }) => first + ' ' + last; // 等同于 function full(person) { return person.first + ' ' + person.last; }
注意点
- 函数体内的 this 对象,就是定义时所在的对象,而不是使用时所在的对象。
- 不可以当作构造函数,也就是说,不可以使用new命令,否则会抛出一个错误。
- 不可以使用 arguments 对象,该对象在函数体内不存在。如果要用,可以用 rest 参数代替。
- 不可以使用yield命令,因此箭头函数不能用作 Generator 函数。
箭头函数可以让 setTimeout 里面的 this,绑定定义时所在的作用域,而不是指向运行时所在的作用域。
function Timer() { this.s1 = 0; this.s2 = 0; // 箭头函数 setInterval(() => this.s1++, 1000); // 普通函数 setInterval(function () { this.s2++; }, 1000); } var timer = new Timer(); setTimeout(() => console.log('s1: ', timer.s1), 3100); setTimeout(() => console.log('s2: ', timer.s2), 3100); // s1: 3 // s2: 0
箭头函数的这种特性很有利于封装回调函数。
var handler = { id: '123456', init: function() { document.addEventListener('click', event => this.doSomething(event.type), false); }, doSomething: function(type) { console.log('Handling ' + type + ' for ' + this.id); } };
this 指向的固定化,并不是因为箭头函数内部有绑定 this 的机制,实际原因是箭头函数根本没有自己的 this,导致内部的 this 就是外层代码块的 this。正是因为它没有 this,所以也就不能用作构造函数。所以,箭头函数转成 ES5 的代码如下。
// ES6 function foo() { setTimeout(() => { console.log('id:', this.id); }, 100); } // ES5 function foo() { var _this = this; setTimeout(function () { console.log('id:', _this.id); }, 100); }
除了this,以下三个变量在箭头函数之中也是不存在的,指向外层函数的对应变量:arguments、super、new.target。
不适用场合
第一个场合是定义函数的方法,且该方法内部包括 this。
const cat = { lives: 9, jumps: () => { this.lives--; // 这里的 this 指向全局对象 } }
第二个场合是需要动态 this 的时候,也不应使用箭头函数。
var button = document.getElementById('press'); button.addEventListener('click', () => { this.classList.toggle('on'); // 这里的 this 指向全局对象 });
双冒号运算符
箭头函数可以绑定 this 对象,大大减少了显式绑定 this 对象的写法(call、apply、bind)。但是,箭头函数并不适用于所有场合,所以现在有一个提案,提出了“函数绑定”(function bind)运算符,用来取代call、apply、bind调用。函数绑定运算符是并排的两个冒号(::),双冒号左边是一个对象,右边是一个函数。该运算符会自动将左边的对象,作为上下文环境(即this对象),绑定到右边的函数上面。
foo::bar; // 等同于 bar.bind(foo); foo::bar(...arguments); // 等同于 bar.apply(foo, arguments); const hasOwnProperty = Object.prototype.hasOwnProperty; function hasOwn(obj, key) { return obj::hasOwnProperty(key); }
如果双冒号左边为空,右边是一个对象的方法,则等于将该方法绑定在该对象上面。
var method = obj::obj.foo; // 等同于 var method = ::obj.foo; let log = ::console.log; // 等同于 var log = console.log.bind(console);
如果双冒号运算符的运算结果,还是一个对象,就可以采用链式写法。
import { map, takeWhile, forEach } from "iterlib"; getPlayers() ::map(x => x.character()) ::takeWhile(x => x.strength > 100) ::forEach(x => console.log(x));
尾调用优化
尾调用(Tail Call)是函数式编程的一个重要概念,指某个函数的最后一步是调用另一个函数。“尾调用优化”(Tail call optimization),即只保留内层函数的调用帧。如果所有函数都是尾调用,那么完全可以做到每次执行时,调用帧只有一项,这将大大节省内存。这就是“尾调用优化”的意义。
function f() { let m = 1; let n = 2; return g(m + n); } f(); // 等同于 function f() { return g(3); } f(); // 等同于 g(3);
对于尾递归来说,由于只存在一个调用帧,所以永远不会发生“栈溢出”错误。下面是一个阶乘函数的普通写法和尾递归写法:
function factorial(n) { if (n === 1) return 1; return n * factorial(n - 1); } factorial(5) // 空间复杂度 O(n)
function factorial(n, total) { if (n === 1) return total; return factorial(n - 1, n * total); } factorial(5, 1) // 空间复杂度 O(1)
递归函数的改写
尾递归的实现,往往需要改写递归函数,确保最后一步只调用自身。做到这一点的方法,就是把所有用到的内部变量改写成函数的参数。
注意:ES6 的尾调用优化只在严格模式下开启,正常模式是无效的。这是因为在正常模式下,函数内部有两个变量,可以跟踪函数的调用栈。
- func.arguments:返回调用时函数的参数。
- func.caller:返回调用当前函数的那个函数。
方法一是在尾递归函数之外,再提供一个正常形式的函数:
function tailFactorial(n, total) { if (n === 1) return total; return tailFactorial(n - 1, n * total); } function factorial(n) { return tailFactorial(n, 1); } factorial(5) // 120
函数式编程有一个概念,叫做柯里化(Currying),意思是将多参数的函数转换成单参数的形式。这里也可以使用柯里化。
function currying(fn, n) { return function (m) { return fn.call(this, m, n); }; } function tailFactorial(n, total) { if (n === 1) return total; return tailFactorial(n - 1, n * total); } const factorial = currying(tailFactorial, 1); factorial(5) // 120
第二种方法是采用 ES6 的函数默认值:
function factorial(n, total = 1) { if (n === 1) return total; return factorial(n - 1, n * total); } factorial(5) // 120
尾递归优化的实现
递归之所以需要优化,原因是调用栈太多,造成溢出,那么只要减少调用栈,就不会溢出。怎么做可以减少调用栈呢?就是采用“循环”换掉“递归”。
function tco(f) { var value; var active = false; var accumulated = []; return function accumulator() { accumulated.push(arguments); if (!active) { active = true; while (accumulated.length) { value = f.apply(this, accumulated.shift()); } active = false; return value; } }; } var sum = tco(function(x, y) { if (y > 0) { return sum(x + 1, y - 1) } else { return x } }); sum(1, 100000)
以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网
猜你喜欢:- HIVE自定义函数的扩展
- 通读ES6--函数的扩展
- 如何扩展AngularJS资源($资源)的构造函数?
- 写扩展性好的代码:函数
- ES6入门之函数的扩展
- [ PHP 内核与扩展开发系列] 函数返回值:引用参数与函数的执行结果
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
HotSpot实战
陈涛 / 人民邮电出版社 / 2014-3 / 69
《HotSpot实战》深入浅出地讲解了HotSpot虚拟机的工作原理,将隐藏在它内部的本质内容逐一呈现在读者面前,包括OpenJDK与HotSpot项目、编译和调试HotSpot的方法、HotSpot内核结构、Launcher、OOP-Klass对象表示系统、链接、运行时数据区、方法区、常量池和常量池Cache、Perf Data、Crash分析方法、转储分析方法、垃圾收集器的设计演进、CMS和G......一起来看看 《HotSpot实战》 这本书的介绍吧!