谷歌开源 GPipe,训练更大模型、​​​不调整超参扩展性能

栏目: 软件资讯 · 发布时间: 5年前

谷歌开源了一个分布式机器学习库 GPipe,这是一个用于高效训练大规模神经网络模型的库。

谷歌开源 GPipe,训练更大模型、​​​不调整超参扩展性能

GPipe 使用同步随机梯度下降和管道并行进行训练,适用于由多个连续层组成的任何 DNN。重要的是,GPipe 允许研究人员轻松部署更多加速器来训练更大的模型,并在不调整超参数的情况下扩展性能。

开发团队在 Google Cloud TPUv2s 上训练了 AmoebaNet-B,其具有 5.57 亿个模型参数和 480 x 480 的输入图像尺寸。该模型在多个流行数据集上表现良好,包括将 single-crop ImageNet 精度推至 84.3%,将 CIFAR-10 精度推至 99%,将 CIFAR-100 精度推至 91.3%。

谷歌开源 GPipe,训练更大模型、​​​不调整超参扩展性能

GPipe 可以最大化模型参数的内存分配。团队在 Google Cloud TPUv2上进行了实验,每个 TPUv2 都有 8 个加速器核心和 64 GB 内存(每个加速器 8 GB)。如果没有 GPipe,由于内存限制,单个加速器可以训练 8200 万个模型参数。由于在反向传播和批量分割中重新计算,GPipe 将中间激活内存从 6.26 GB 减少到 3.46GB,在单个加速器上实现了 3.18 亿个参数。此外,通过管道并行,最大模型大小与预期分区数成正比。通过 GPipe,AmoebaNet 能够在 TPUv2 的 8 个加速器上加入 18 亿个参数,比没有 GPipe 的情况下多 25 倍。

核心 GPipe 库目前开源在 Lingvo 框架下

具体原理可以查看谷歌的 发布公告


以上所述就是小编给大家介绍的《谷歌开源 GPipe,训练更大模型、​​​不调整超参扩展性能》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

榨干百度谷歌

榨干百度谷歌

张志 / 电子工业出版社 / 2011-1 / 28.00元

小小的搜索引擎,可以成为你从事网络营销的利器。如果你还没有意识到这一点,或者还不知道从何下手,请打开《榨干百度谷歌:搜索引擎广告大赢家》吧!《榨干百度谷歌:搜索引擎广告大赢家》作者将其丰富的实战经验融汇在这书中,结合大量国内不同行业实际应用案例,生动地告诉读者,怎样正确地利用搜索引擎,以很小的投资获得巨大的回报。并且深入浅出地介绍了企业开展搜索营销的关键点,包括如何提炼并组合关键词、如何撰写简洁明......一起来看看 《榨干百度谷歌》 这本书的介绍吧!

URL 编码/解码
URL 编码/解码

URL 编码/解码

XML 在线格式化
XML 在线格式化

在线 XML 格式化压缩工具

UNIX 时间戳转换
UNIX 时间戳转换

UNIX 时间戳转换