谷歌开源 GPipe,训练更大模型、​​​不调整超参扩展性能

栏目: 软件资讯 · 发布时间: 6年前

谷歌开源了一个分布式机器学习库 GPipe,这是一个用于高效训练大规模神经网络模型的库。

谷歌开源 GPipe,训练更大模型、​​​不调整超参扩展性能

GPipe 使用同步随机梯度下降和管道并行进行训练,适用于由多个连续层组成的任何 DNN。重要的是,GPipe 允许研究人员轻松部署更多加速器来训练更大的模型,并在不调整超参数的情况下扩展性能。

开发团队在 Google Cloud TPUv2s 上训练了 AmoebaNet-B,其具有 5.57 亿个模型参数和 480 x 480 的输入图像尺寸。该模型在多个流行数据集上表现良好,包括将 single-crop ImageNet 精度推至 84.3%,将 CIFAR-10 精度推至 99%,将 CIFAR-100 精度推至 91.3%。

谷歌开源 GPipe,训练更大模型、​​​不调整超参扩展性能

GPipe 可以最大化模型参数的内存分配。团队在 Google Cloud TPUv2上进行了实验,每个 TPUv2 都有 8 个加速器核心和 64 GB 内存(每个加速器 8 GB)。如果没有 GPipe,由于内存限制,单个加速器可以训练 8200 万个模型参数。由于在反向传播和批量分割中重新计算,GPipe 将中间激活内存从 6.26 GB 减少到 3.46GB,在单个加速器上实现了 3.18 亿个参数。此外,通过管道并行,最大模型大小与预期分区数成正比。通过 GPipe,AmoebaNet 能够在 TPUv2 的 8 个加速器上加入 18 亿个参数,比没有 GPipe 的情况下多 25 倍。

核心 GPipe 库目前开源在 Lingvo 框架下

具体原理可以查看谷歌的 发布公告


以上所述就是小编给大家介绍的《谷歌开源 GPipe,训练更大模型、​​​不调整超参扩展性能》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

HTML5与CSS3基础教程(第8版)

HTML5与CSS3基础教程(第8版)

[美] Elizabeth Castro、[美] Bruce Hyslop / 望以文 / 人民邮电出版社 / 2014-5 / 69.00元

本书是风靡全球的HTML和CSS入门教程的最新版,至第6版累积销量已超过100万册,被翻译为十多种语言,长期雄踞亚马逊书店计算机图书排行榜榜首。 第8版秉承作者直观透彻、循序渐进、基础知识与案例实践紧密结合的讲授特色,采用独特的双栏图文并排方式,手把手指导读者从零开始轻松入门。相较第7版,全书2/3以上的内容进行了更新,全面反映了HTML5和CSS3的最新特色,细致阐述了响应式Web设计与移......一起来看看 《HTML5与CSS3基础教程(第8版)》 这本书的介绍吧!

CSS 压缩/解压工具
CSS 压缩/解压工具

在线压缩/解压 CSS 代码

JSON 在线解析
JSON 在线解析

在线 JSON 格式化工具

XML、JSON 在线转换
XML、JSON 在线转换

在线XML、JSON转换工具