内容简介:值得注意的是cv2.imshow并不会阻塞程序,也就是说如果程序执行完毕,则图像窗口就会被关闭,需要结合函数cv2.waitKey来使用等待delay时间,或者按下任意按键后继续程序,并返回按键码完整示例:
Mat cv::imread ( const String & filename, int flags = IMREAD_COLOR )
第一个参数为图像路径,第二个为加载图像的模式
这里值得注意的是,当传入的图像路径是一个错误的路径时,此函数并不会抛异常,而是返回一个None值(python API)
1.2 显示图像
void cv::imshow ( const String & winname, //窗口名称 InputArray mat //图像数据 )
值得注意的是cv2.imshow并不会阻塞程序,也就是说如果程序执行完毕,则图像窗口就会被关闭,需要结合函数cv2.waitKey来使用
int cv::waitKey (int delay = 0) int cv::waitKeyEx(int delay = 0)//Similar to waitKey, but returns full key code.
等待delay时间,或者按下任意按键后继续程序,并返回按键码
完整示例:
cv2.namedWindow('image', cv2.WINDOW_NORMAL) cv2.imshow('image',img) cv2.waitKey(0) cv2.destroyAllWindows()
相对于imshow提供的简单图像显示方法,用的更多的是matlablip库强大的显示功能,后面更多的也是使用这个库来做一些显示的操作
import numpy as np import cv2 from matplotlib import pyplot as plt img = cv2.imread('messi5.jpg',0) plt.imshow(img, cmap = 'gray', interpolation = 'bicubic') plt.xticks([]), plt.yticks([]) # to hide tick values on X and Y axis plt.show()
这里要注意的是,opencv读取图像默认的通道顺序为bgr,MATLAB显示的时候默认是rgb,需要用cv2的cvtColor转换一下通道顺序再显示。
1.3 保存图像
cv2.imwrite('messigray.png',img)
2. 视频
2.1 从摄像头读取视频
opencv提供了VideoCapture工具来从摄像头读取视频,示例代码:
import numpy as np import cv2 cap = cv2.VideoCapture(0) while(True): # Capture frame-by-frame ret, frame = cap.read() # Our operations on the frame come here gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # Display the resulting frame cv2.imshow('frame',gray) if cv2.waitKey(1) & 0xFF == ord('q'): break # When everything done, release the capture cap.release() cv2.destroyAllWindows()
cap.read的返回值,第一个bool,标记是否正常返回帧,第二个为mat,帧数据
可以调用 cap.isOpened()
检查一下摄像头是否打开,如果为false,可以调用 cap.open()
打开摄像头
可以通过 cap.get
和 cap.set
函数来读取,修改视频属性
virtual double cv::VideoCapture::get (int propId)const
virtual bool cv::VideoCapture::set(int propId,double value)
例如可以用来修改视频尺寸等
2.2 从文件读取视频
import numpy as np import cv2 cap = cv2.VideoCapture('vtest.avi') while(cap.isOpened()): ret, frame = cap.read() gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) cv2.imshow('frame',gray) if cv2.waitKey(1) & 0xFF == ord('q'): break cap.release() cv2.destroyAllWindows()
2.3 保存视频
opencv提供了videoWriter函数来保存视频
cv::VideoWriter::VideoWriter ( const String & filename, //文件名 int fourcc, //编解码器配置 double fps, //保存帧率 Size frameSize, //视频尺寸 bool isColor = true //正常还是灰度 )
其中,编解码器需要使用单独的函数来初始化,且是平台相关的,在 fourcc.org
上可以找到详细的说明
- Fedora : DIVX, XVID, MJPG, X264, WMV1, WMV2. (XVID is more preferable. MJPG results in high size video. X264 gives very small size video)
- Windows : DIVX (More to be tested and added)
- OSX : MJPG (.mp4), DIVX (.avi), X264 (.mkv).
获取编解码器配置值的方法,比如MJPG:
cv2.VideoWriter_fourcc('M','J','P','G')
或cv2.VideoWriter_fourcc(*'MJPG')
从摄像头读取视频并保存示例:import numpy as np import cv2 cap = cv2.VideoCapture(0) # Define the codec and create VideoWriter object fourcc = cv2.VideoWriter_fourcc(*'XVID') out = cv2.VideoWriter('output.avi',fourcc, 20.0, (640,480)) while(cap.isOpened()): ret, frame = cap.read() if ret==True: frame = cv2.flip(frame,0) # write the flipped frame out.write(frame) cv2.imshow('frame',frame) if cv2.waitKey(1) & 0xFF == ord('q'): break else: break # Release everything if job is finished cap.release() out.release() cv2.destroyAllWindows()
3. 绘图函数
3.1 线段
cv2.line,需要传入起点、终点、颜色、粗细
import numpy as np import cv2 # Create a black image img = np.zeros((512,512,3), np.uint8) # Draw a diagonal blue line with thickness of 5 px cv2.line(img,(0,0),(511,511),(255,0,0),5)
3.2 矩形
画矩形,传入左上角、右下角、颜色、粗细
cv2.rectangle(img,(384,0),(510,128),(0,255,0),3)
3.3 圆形
传入圆心、半径、颜色、线段粗细,若粗细是负数,则代表填充的圆形
cv2.circle(img,(447,63), 63, (0,0,255), -1)
3.4 椭圆
椭圆参数比上面的多一些,函数定义及图示如下
void cv::ellipse ( InputOutputArray img, //输入图 Point center, //圆心坐标 Size axes, //长轴、短轴 double angle, double startAngle, double endAngle, const Scalar & color, int thickness = 1, int lineType = LINE_8, int shift = 0 )
3.5 多边形
void cv::polylines ( InputOutputArray img, //输入 InputArrayOfArrays pts, //顶点列表 bool isClosed, //是否闭合 const Scalar & color, //颜色 int thickness = 1, //粗细 int lineType = LINE_8, //线段类型 int shift = 0 //顶点坐标中的小数位数 )
pts = np.array([[10,5],[20,30],[70,20],[50,10]], np.int32) pts = pts.reshape((-1,1,2)) cv2.polylines(img,[pts],True,(0,255,255))
3.6 文字
void cv::putText ( InputOutputArray img, //输入图 const String & text, //文字内容 Point org, //文字左下角坐标 int fontFace,//字体 double fontScale,//大小 Scalar color,//颜色 int thickness = 1,//线段粗细 int lineType = LINE_8,//线段类型 bool bottomLeftOrigin = false //为true时,文字坐标原点在左下角,否则在左上角(py版本默认左下角) )
font = cv2.FONT_HERSHEY_SIMPLEX cv2.putText(img,'OpenCV',(10,500), font, 4,(255,255,255),2,cv2.LINE_AA)
绘图函数还有很多,详见 文档 。
4. 鼠标事件
通过这种方式查看opencv支持的事件名称
import cv2 events = [i for i in dir(cv2) if 'EVENT' in i] print( events )
示例:监听鼠标双击事件,在双击的位置画一个圆
import cv2 import numpy as np # mouse callback function def draw_circle(event,x,y,flags,param): if event == cv2.EVENT_LBUTTONDBLCLK: cv2.circle(img,(x,y),100,(255,0,0),-1) # Create a black image, a window and bind the function to window img = np.zeros((512,512,3), np.uint8) cv2.namedWindow('image') cv2.setMouseCallback('image',draw_circle) while(1): cv2.imshow('image',img) if cv2.waitKey(20) & 0xFF == 27: break cv2.destroyAllWindows()
一个复杂一点的示例,综合多个鼠标、键盘事件,实现画矩形或小圆点的操作
import cv2 import numpy as np drawing = False # true if mouse is pressed mode = True # if True, draw rectangle. Press 'm' to toggle to curve ix,iy = -1,-1 # mouse callback function def draw_circle(event,x,y,flags,param): global ix,iy,drawing,mode if event == cv2.EVENT_LBUTTONDOWN: drawing = True ix,iy = x,y elif event == cv2.EVENT_MOUSEMOVE: if drawing == True: if mode == True: cv2.rectangle(img,(ix,iy),(x,y),(0,255,0),-1) else: cv2.circle(img,(x,y),5,(0,0,255),-1) elif event == cv2.EVENT_LBUTTONUP: drawing = False if mode == True: cv2.rectangle(img,(ix,iy),(x,y),(0,255,0),-1) else: cv2.circle(img,(x,y),5,(0,0,255),-1) img = np.zeros((512,512,3), np.uint8) cv2.namedWindow('image') cv2.setMouseCallback('image',draw_circle) while(1): cv2.imshow('image',img) k = cv2.waitKey(1) & 0xFF if k == ord('m'): mode = not mode elif k == 27: break cv2.destroyAllWindows()
5. 滚动条组件
创建滚动条函数
int cv::createTrackbar ( const String & trackbarname, //滚动条名称 const String & winname,//窗口名称 int * value, //滑块当前位置 int count,//最大值 TrackbarCallback onChange = 0,//回调函数 void * userdata = 0 //传给回调的用户数据 )
获取滚筒条当前值
int cv::getTrackbarPos ( const String & trackbarname, const String & winname )
示例:通过滚动条创建一个调色板,并创建一个开关
import cv2 import numpy as np def nothing(x): pass # Create a black image, a window img = np.zeros((300,512,3), np.uint8) cv2.namedWindow('image') # create trackbars for color change cv2.createTrackbar('R','image',0,255,nothing)cv2.createTrackbar('G','image',0,255,nothing) cv2.createTrackbar('B','image',0,255,nothing) # create switch for ON/OFF functionality switch = '0 : OFF \n1 : ON' cv2.createTrackbar(switch, 'image',0,1,nothing) while(1): cv2.imshow('image',img) k = cv2.waitKey(1) & 0xFF if k == 27: break # get current positions of four trackbars r = cv2.getTrackbarPos('R','image') g = cv2.getTrackbarPos('G','image') b = cv2.getTrackbarPos('B','image') s = cv2.getTrackbarPos(switch,'image') if s == 0: img[:] = 0 else: img[:] = [b,g,r] cv2.destroyAllWindows()
以上所述就是小编给大家介绍的《Opencv GUI相关操作》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!
猜你喜欢:本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
Database Design and Implementation
Edward Sciore / Wiley / 2008-10-24 / 1261.00 元
* Covering the traditional database system concepts from a systems perspective, this book addresses the functionality that database systems provide as well as what algorithms and design decisions will......一起来看看 《Database Design and Implementation》 这本书的介绍吧!