内容简介:谷歌开源了一个分布式机器学习库 GPipe,这是一个用于高效训练大规模神经网络模型的库。 GPipe 使用同步随机梯度下降和管道并行进行训练,适用于由多个连续层组成的任何 DNN。重要的是,GPipe 允许研究人员轻松部...
谷歌开源了一个分布式机器学习库 GPipe,这是一个用于高效训练大规模神经网络模型的库。
GPipe 使用同步随机梯度下降和管道并行进行训练,适用于由多个连续层组成的任何 DNN。重要的是,GPipe 允许研究人员轻松部署更多加速器来训练更大的模型,并在不调整超参数的情况下扩展性能。
开发团队在 Google Cloud TPUv2s 上训练了 AmoebaNet-B,其具有 5.57 亿个模型参数和 480 x 480 的输入图像尺寸。该模型在多个流行数据集上表现良好,包括将 single-crop ImageNet 精度推至 84.3%,将 CIFAR-10 精度推至 99%,将 CIFAR-100 精度推至 91.3%。
GPipe 可以最大化模型参数的内存分配。团队在 Google Cloud TPUv2上进行了实验,每个 TPUv2 都有 8 个加速器核心和 64 GB 内存(每个加速器 8 GB)。如果没有 GPipe,由于内存限制,单个加速器可以训练 8200 万个模型参数。由于在反向传播和批量分割中重新计算,GPipe 将中间激活内存从 6.26 GB 减少到 3.46GB,在单个加速器上实现了 3.18 亿个参数。此外,通过管道并行,最大模型大小与预期分区数成正比。通过 GPipe,AmoebaNet 能够在 TPUv2 的 8 个加速器上加入 18 亿个参数,比没有 GPipe 的情况下多 25 倍。
核心 GPipe 库目前开源在 Lingvo 框架下。
具体原理可以查看谷歌的发布公告。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网
猜你喜欢:- 开源 AI 模型开发平台「天枢平台」已在 Gitee 开源
- 向 OpenAI 喊话:语言模型啥时候开源?
- Facebook开源深度学习推荐模型DLRM
- Oracle开源机器学习模型云端部署工具Graphpipe
- 完胜 BERT,谷歌最佳 NLP 预训练模型开源
- 微软开源基于模型的机器学习框架 Infer.NET
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
Algorithms on Strings, Trees and Sequences
Dan Gusfield / Cambridge University Press / 1997-5-28 / USD 99.99
String algorithms are a traditional area of study in computer science. In recent years their importance has grown dramatically with the huge increase of electronically stored text and of molecular seq......一起来看看 《Algorithms on Strings, Trees and Sequences》 这本书的介绍吧!