内容简介:在 Spring Cloud 体系中,熔断降级我们会使用 Hystrix 框架,限流通常会在 Zuul 中进行处理,Zuul 中没有自带限流的功能,我们可以自己做限流或者集成第三方开源的限流框架。最新一代的网关 Spring Cloud Gateway 则自带了限流的功能。有没有那么一个框架能够把熔断跟限流都给做了,以前没有,但是现在有了,我这属于自问自答哈!这个框架就是阿里最新开源的 Sentinel。第一眼见到 Sentinel 有一种很熟悉的感觉,似曾相识啊!Redis 里面集群的那个哨兵模式不就是
前言
在 Spring Cloud 体系中,熔断降级我们会使用 Hystrix 框架,限流通常会在 Zuul 中进行处理,Zuul 中没有自带限流的功能,我们可以自己做限流或者集成第三方开源的限流框架。最新一代的网关 Spring Cloud Gateway 则自带了限流的功能。
有没有那么一个框架能够把熔断跟限流都给做了,以前没有,但是现在有了,我这属于自问自答哈!这个框架就是阿里最新开源的 Sentinel。
第一眼见到 Sentinel 有一种很熟悉的感觉,似曾相识啊!Redis 里面集群的那个哨兵模式不就是 Sentinel 嘛。后来我才发现我错了,大错特错,这是一个新的框架,潜力 + 实力 = 阿里开源。
Sentinel 是什么?
本段介绍来源于Sentinel Github主页介绍
随着微服务的流行,服务和服务之间的稳定性变得越来越重要。Sentinel 以流量为切入点,从流量控制、熔断降级、系统负载保护等多个维度保护服务的稳定性。
Sentinel 具有以下特征:
- 丰富的应用场景:Sentinel 承接了阿里巴巴近 10 年的双十一大促流量的核心场景,例如秒杀(即突发流量控制在系统容量可以承受的范围)、消息削峰填谷、集群流量控制、实时熔断下游不可用应用等。
- 完备的实时监控:Sentinel 同时提供实时的监控功能。您可以在控制台中看到接入应用的单台机器秒级数据,甚至 500 台以下规模的集群的汇总运行情况。
- 广泛的开源生态:Sentinel 提供开箱即用的与其它开源框架/库的整合模块,例如与 Spring Cloud、Dubbo、gRPC 的整合。您只需要引入相应的依赖并进行简单的配置即可快速地接入 Sentinel。
- 完善的 SPI 扩展点:Sentinel 提供简单易用、完善的 SPI 扩展接口。您可以通过实现扩展接口来快速地定制逻辑。例如定制规则管理、适配动态数据源等。
Sentinel 的主要特性:
Sentinel 的开源生态:
初次见面的我们
先来简单的体验下 Sentinel 吧,在你的Maven项目中增加 Sentinel 的依赖:
<dependency> <groupId>com.alibaba.csp</groupId> <artifactId>sentinel-core</artifactId> <version>1.4.1</version> </dependency>
Sentinel中需要限流的称之为资源,对资源进行处理,下面来看最简单的一段代码:
public static void main(String[] args) { initFlowRules(); while (true) { Entry entry = null; try { entry = SphU.entry("HelloWorld"); /*您的业务逻辑 - 开始*/ System.out.println("hello world"); /*您的业务逻辑 - 结束*/ } catch (BlockException e1) { /*流控逻辑处理 - 开始*/ System.out.println("block!"); /*流控逻辑处理 - 结束*/ } finally { if (entry != null) { entry.exit(); } } } } private static void initFlowRules(){ List<FlowRule> rules = new ArrayList<>(); FlowRule rule = new FlowRule(); rule.setResource("HelloWorld"); rule.setGrade(RuleConstant.FLOW_GRADE_QPS); // Set limit QPS to 20. rule.setCount(20); rules.add(rule); FlowRuleManager.loadRules(rules); }
第一行中初始化限流的规则,创建了一个资源叫 HelloWorld,设置了这个资源的QPS 为 20。
在业务开始前使用SphU.entry();方法标识开始,结束使用entry.exit();,如果触发了流控逻辑就会抛出BlockException异常让用户自行处理。
代码运行之后,我们可以在日志 ~/logs/csp/${appName}-metrics.log.xxx 里看到下面的输出:
|--timestamp-|------date time----|-resource-|p |block|s |e|rt 1529998904000|2018-06-26 15:41:44|HelloWorld|20|0 |20|0|0 1529998905000|2018-06-26 15:41:45|HelloWorld|20|5579 |20|0|728 1529998906000|2018-06-26 15:41:46|HelloWorld|20|15698|20|0|0 1529998907000|2018-06-26 15:41:47|HelloWorld|20|19262|20|0|0 1529998908000|2018-06-26 15:41:48|HelloWorld|20|19502|20|0|0 1529998909000|2018-06-26 15:41:49|HelloWorld|20|18386|20|0|0
- p:通过的请求,
- block:被阻止的请求
- s:成功执行完成的请求个数
- e:用户自定义的异常
- rt:平均响应时长。
我是Mac系统,日志是在这个目录下,Windows我没试过,应该也在用户的主目录下
上面这个列子是官方的示列,如果你觉得没有看到你想要的效果,因为一直在循环,也不知道有没有限流成功,我们可以稍微改动一下进行测试就知道了。
将while循环改成for循环, 次数为10000次,只输出一句话,不做任何限制,执行完成的时间大概在40毫秒左右。
long startTime = System.currentTimeMillis(); for (int i = 0; i < 10000; i++) { System.out.println("hello world"); } long endTime = System.currentTimeMillis(); System.out.println(endTime - startTime);
下面加上限流的逻辑,执行完成的时间基本上就超过100毫秒了,可见限流起了作用。
for (int i = 0; i < 10000; i++) { Entry entry = null; try { entry = SphU.entry("HelloWorld"); // 资源中的逻辑. System.out.println("hello world"); } catch (BlockException e1) { System.out.println("blocked!"); } finally { if (entry != null) { entry.exit(); } } } long endTime = System.currentTimeMillis(); System.out.println(endTime - startTime);
欢迎加入我的知识星球,一起交流技术,免费学习猿天地的课程( http://cxytiandi.com/course )
PS:目前星球中正在星主的带领下组队学习Sentinel,等你哦!
以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网
猜你喜欢:- Sentinel:分布式系统的流量防卫兵基础实战
- Sentinel:分布式系统的流量防卫兵进阶实战
- 分布式锁原理——redis分布式锁,zookeeper分布式锁
- 漫谈分布式系统(十):初探分布式事务
- 漫谈分布式系统(十):初探分布式事务
- 漫谈分布式系统(二十三):分布式数据仓库
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。