【Python】SQL to Pandas 速查表(二)

栏目: 数据库 · 发布时间: 5年前

内容简介:本篇将解构下面的本篇将解构下面的

本篇将解构下面的 SQL 查询句式, 使用 Pandas 进行实现

SQL 查询句式

SELECT DISTINCT [字段] 
FROM [表] JOIN [bin] ON [连接条件] 
WHERE [过滤条件] 
GROUP BY [字段] 
HAVING [条件] 
ORDER BY [字段] DESC 
LIMIT [个数] OFFSET [个数]
复制代码

读取评论数据

df_comments = pd.read_sql(sql="select * from comments", con=conn)
复制代码

数据预览

df_comments
复制代码
id student_id content
0 1 1 测试评论1
1 2 5 测试评论5
2 3 2 测试评论2
3 4 3 测试评论3
4 5 1 测试评论11
5 6 9 测试评论9

JOIN

(INNER) JOIN

SQL

SELECT
	* 
FROM
	student
	INNER JOIN comments ON student.id = comments.student_id;
复制代码

Pandas

pd.merge(df, df_comments, left_on='id', right_on='student_id')
复制代码

LEFT (OUTER) JOIN

SQL

SELECT
	* 
FROM
	student
	LEFT JOIN comments ON student.id = comments.student_id;
复制代码

Pandas

pd.merge(df, df_comments, left_on='id', right_on='student_id', how='left')
复制代码

RIGHT (OUTER) JOIN

SQL

SELECT
	* 
FROM
	student
	RIGHT JOIN comments ON student.id = comments.student_id;
复制代码

Pandas

pd.merge(df, df_comments, left_on='id', right_on='student_id', how='right')
复制代码

UNION

SQL

SELECT * FROM student where city ='北京' 
UNION 
SELECT * FROM student where sex ='男';
复制代码

Pandas

pd.concat([df[df.city == '北京'], df[df.sex == '男']]).drop_duplicates().reset_index()
复制代码

UNION ALL

SQL

SELECT * FROM student where city ='北京' 
UNION ALL 
SELECT * FROM student where sex ='男';
复制代码

Pandas

pd.concat([df[df.city == '北京'], df[df.sex == '男']]).reset_index()
复制代码

本篇内容

本篇将解构下面的 SQL 查询句式, 使用 Pandas 进行实现

SQL 创建句式

CREATE TABLE [表名] (
    [列名] [类型],
    [列名] [类型],
   ....
);
复制代码

SQL 插入句式

INSERT INTO [表名] VALUES ([值], [值], ...);
INSERT INTO [表名] ([列名],[列名] ...) VALUES ([值], [值], ...);
复制代码

SQL 更新句式

UPDATE [表名]
SET [列名] = [值], [列名] = [值]
WHERE [过滤条件];
复制代码

SQL 删除句式

DELETE FROM [表名] WHERE [过滤条件];
复制代码

CREATE

SQL

CREATE TABLE student (
	id INT ( 11 ) NOT NULL AUTO_INCREMENT,
	name VARCHAR ( 10 ) COLLATE utf8mb4_general_ci DEFAULT NULL,
	age date DEFAULT NULL,
	sex VARCHAR ( 10 ) COLLATE utf8mb4_general_ci DEFAULT NULL,
	city VARCHAR ( 255 ) CHARACTER 
    SET utf8mb4 COLLATE utf8mb4_general_ci DEFAULT NULL,
	money DOUBLE ( 255, 2 ) DEFAULT NULL,

);
复制代码

Pandas

pd.DataFrame(columns=['id', 'name', 'sex', 'city', 'money'])
复制代码

INSERT

SQL

INSERT INTO student (id, name, age, sex, city, money )
VALUES
	(1, '张三', '2017-12-20', '女', '天津', 20.00 );
复制代码

Pandas

# 第一种
df.loc[-1] = [1, '张三', '女', '天津', 20.00]
df.index = df.index + 1
df = df.sort_index()

# 第二种
temp_pd = pd.DataFrame({'id': [1], 'name': ['张三'], 'sex': ['女'], 'city': ['天津'], 'money': [20.00]})
df = pd.concat([df,temp_pd], ignore_index=True)
df.reset_index()

# 第三种
temp_pd = pd.DataFrame([[1,'张三1', '女', '天津', 20.00]], columns=df.columns)
df = pd.concat([df, temp_pd])
df.reset_index()
复制代码

UPDATE

SQL

UPDATE student SET money = 300 WHERE id = 1;
复制代码

Pandas

df.loc[df.id == 1, 'money'] = 300
复制代码

以上所述就是小编给大家介绍的《【Python】SQL to Pandas 速查表(二)》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

区块链

区块链

(美)梅兰妮·斯万 / 新星出版社 / 2016-1-1 / 50元

本书以全景式的方式介绍了区块链相关技术目前发展状况和未来技术衍生方向的展望,作者认为区块链技术可能是继互联网发明以来最大的技术革命。全书从比特币的概念模型和区块链技术正开始结合的方面讨论了三个不同的结构层面:区块链1.0、2.0和3.0。首先介绍了比特币和区块链技术的基本定义和概念,还有作为区块链1.0应用核心的货币和支付系统。其次,区块链2.0将超越货币范畴,会发展为货币市场和金融应用,类似于合......一起来看看 《区块链》 这本书的介绍吧!

JS 压缩/解压工具
JS 压缩/解压工具

在线压缩/解压 JS 代码

Base64 编码/解码
Base64 编码/解码

Base64 编码/解码