内容简介:It's always the attention to detail and the little grace notes that really make something sing. 专注细节愈出彩,别致心思定成败。本文主要分享了LRU 缓存淘汰算法两种实现。所有源码均已上传至github:
It's always the attention to detail and the little grace notes that really make something sing. 专注细节愈出彩,别致心思定成败。
本文主要分享了LRU 缓存淘汰算法两种实现。 重要的不是实现,而且思想!
所有源码均已上传至github: github.com/chaoaiqi/st…
定义
LRU(Least Recently Used)最近最少使用策略就像它的名字一样,是根据数据的历史访问记录来进行淘汰数据的,其思想是“如果数据最近被访问过,那么将来被访问的几率也更高;长期不被使用的数据在将来用到的几率也不大;当数据所占内存达到一定的阈值时,将移除最近最少被使用的数据”。
举例
比如一个书柜(容量为10),我会把我自己的书籍放进去,其中有两本书籍是我最喜欢的,经常翻阅,但是随着我的购买,书柜会逐渐放满(内存溢出),这时候就需要用到LRU的思想了,把我不经常看的,从书柜里拿出,放进箱子里,然后再把新买的书籍放进书柜。
再 比如Redis,它是基于内存的,但是内存也不是无穷大的,当内存占用达到一个阈值的时候,它就可以使用LRU等一系列缓存算法,或者是将数据存到硬盘里。
具体的实现代码如下:
基于链表
链表初始化,申请capacity大小的内存空间
模拟LRU的访问(如果没有该数据,则插入头部)
注意:该if-else语句不能交换顺序,否则会出现链表已满,并且该数据已存在的情况无法处理。
删除指定数据方法,常规删除
删除链表尾部数据
在头部插入数据
测试结果如下
- 首先将capacity大小的链表插满
- 当插入capacity+1个数据时,需要删除尾部数据
- 当插入的数据存在的时候,将它从其位置删除,并且插入头部
基于数组
数据比较链表实现起来更为简单,在此不做阐述,直接上代码。
测试结果如下
注意:因为有大量频繁的访问导致数据迁移频繁,因此数组并不适合做这种事情,可以考虑加一个HaspMap做缓存,避免数据的频繁迁移。
end
您的点赞和关注是对我最大的支持,谢谢!
以上所述就是小编给大家介绍的《LRU 缓存淘汰算法的两种实现》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!
猜你喜欢:- 缓存的一些问题和一些加密算法【缓存问题】
- 算法 - 06 | 链表(上):如何实现LRU缓存淘汰算法?
- 数据结构与算法 | 如何实现LRU缓存淘汰算法
- golang实现LRU缓存淘汰算法
- 知多一点 LRU 缓存算法
- 聊聊缓存淘汰算法:LRU 实现原理
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。