Consensus Clustering

栏目: 数据库 · 发布时间: 6年前

内容简介:Consensus Clustering(一致性聚类),无监督聚类方法,是一种常见的癌症亚型分类研究方法(如乳腺癌中的PAM50),可根据不同组学数据集将样本区分成几个亚型,从而发现新的疾病亚型或者对不同亚型进行比较分析(Consensus Clustering的思路是:采用重抽样方法抽取一定样本的数据集,指定聚类数目k并计算不同聚类数目下的合理性(PAC方法)PAC可用来优化聚类模型选择最优的K值,

Consensus Clustering(一致性聚类),无监督聚类方法,是一种常见的癌症亚型分类研究方法(如乳腺癌中的PAM50),可根据不同组学数据集将样本区分成几个亚型,从而发现新的疾病亚型或者对不同亚型进行比较分析( Justification for using consensus clustering(wiki) )

Consensus Clustering的思路是:采用重抽样方法抽取一定样本的数据集,指定聚类数目k并计算不同聚类数目下的合理性(PAC方法)

PAC可用来优化聚类模型选择最优的K值, wiki 解释如下:

The “proportion of ambiguous clustering” (PAC) measure quantifies this middle segment; and is defined as the fraction of sample pairs with consensus indices falling in the interval (u1, u2) ∈ [0, 1] where u1 is a value close to 0 and u2 is a value close to 1 (for instance u1=0.1 and u2=0.9). A low value of PAC indicates a flat middle segment, and a low rate of discordant assignments across permuted clustering runs. We can therefore infer the optimal number of clusters by the K value having the lowest PAC Consensus Clustering

从上图可得:一般常用的方法是考虑CDF下降坡度小(在u1-u2范围内的曲线),但有时不一定要遵守这个方法 how to choose optimal K in Consensus clustering ,可以选择其他K值最优的方法或者按照自己的研究目的来选

除了Consensus Clustering外,还有些大文章会用non-negative matrix factorization (NMF) consensus cluster(R包-NMF)来寻找亚型,如文章:Proteomics identifies new therapeutic targets of early-stage hepatocellular carcinoma(Nature)

Consensus Clustering实现比较简单,有现成的R包ConsensusClusterPlus,操作比较简单,只需要一个表达矩阵(如 rawdata.txt ),如下:

data <- read.table(file = "rawdata.txt", sep = "\t", header = T, stringsAsFactors = F, row.names = 1, check.names = F)
# 过滤50%缺失值的
data2 <- data[apply(data, 1, function(x){sum(is.na(x)) < ncol(data)/2}),]
data2 <- as.matrix(data2)

res <- ConsensusClusterPlus(data2, maxK = 10, reps = 1000, pItem = 0.8, pFeature = 1, clusterAlg = "pam", corUse = "complete.obs", seed=123456, plot="png", writeTable=T)

其结果将会输出k从2-10各个情况下的分型情况,聚类的方法用的是 pam ,抽样比例为0.8,最后输出png图和csv表格文件

结果文件:

Consensus Clustering

Consensus Clustering

Consensus Clustering

按照上述选择k值的方法,根据这个数据的结果,感觉k值可以暂时选择7~当然也可以根据研究背景的选择来定

确定亚型后,接着可以基于各个亚型来分析:比如绘制不同亚型的表达模型热图、看看某个分类下不同亚型的表达高低差异、做不同亚型之间基因表达的显著性差异以及结合PCA或者共表达网络等等


以上所述就是小编给大家介绍的《Consensus Clustering》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

自品牌

自品牌

[美] 丹·斯柯伯尔(Dan Schawbel) / 佘卓桓 / 湖南文艺出版社 / 2016-1-1 / 39.80元

什么是自品牌?如何利用新媒体推广自己?如何放大自己的职业优势? 细化到如何巩固“弱联系”人脉?如何在团队里合作与生存?如何开创自己的事业?这些都是职场人不得不面临的问题,但少有人告诉你答案,你需要利用书里分享的高效方法独辟蹊径,把自己变成职场里高性价比的人才。这是一本教你利用新型社交媒体开发职业潜能的自我管理读本,不管你是新人还是老鸟,都可以通过打造自品牌在职场中脱颖而出。如果不甘平庸,就亮......一起来看看 《自品牌》 这本书的介绍吧!

在线进制转换器
在线进制转换器

各进制数互转换器

Base64 编码/解码
Base64 编码/解码

Base64 编码/解码

HSV CMYK 转换工具
HSV CMYK 转换工具

HSV CMYK互换工具