机器学习 | 决策树的生成过程是怎样?(一)

栏目: 数据库 · 发布时间: 5年前

内容简介:本文笔者将用具体例子讲述决策树的构建过程,分析:决策树生成过程中有什么样的问题?决策树的定义:

本文笔者将用具体例子讲述决策树的构建过程,分析:决策树生成过程中有什么样的问题?

机器学习 | 决策树的生成过程是怎样?(一)

一、基本概念

决策树的定义:

首先,决策树是一种有监督的分类算法——即给定X,Y值,构建X,Y的映射关系。

不同于线性回归等是多项式,决策树是一种树形的结构,一般由根节点、父节点、子节点、叶子节点构成如图所示。

父节点和子节点是相对的,子节点可以由父节点分裂而来,而子节点还能作为新的父节点继续分裂;根节点是没有父节点,即初始分裂节点,叶子节点是没有子节点的节点,为终节点。

每一个分支代表着一个判断,每个叶子节点代表一种结果。

机器学习 | 决策树的生成过程是怎样?(一)

这是在已知各种情况的发生的概率的基础上,通过构建决策树来进行分析的一种方式。

预测方式:

  • 根据输入的样本X的特征属性和决策树的取值,将输入的X样本分配到某一个叶子节点中。
  • 将叶子节点中出现最多的Y值,作为输入的X样本的预测类别。

目的:

最优的模型应该是:叶子节点中只包含一个类别的数据。

但是,事实是不可能将数据分的那么的纯,因此,需要“贪心”策略,力争在每次分割时都比上一次好一些,分的更纯一些。

二、决策树构建过程

机器学习 | 决策树的生成过程是怎样?(一)

步骤一:将所有的特征看成一个一个的节点,eg(拥有房产、婚姻状态、年收入这些特征,我们可以看成一个一个的节点。)

步骤二:遍历当前特征的每一种分割方式,找到最好的分割点eg(婚姻状态这个特征,我们可以按照单身、已婚、离婚进行划分;也可以按照结过婚、没有结过婚进行划分);将数据划分为不同的子节点,eg: N1、 N2….Nm;计算划分之后所有子节点的“纯度”信息

步骤三:使用第二步遍历所有特征,选择出最优的特征,以及该特征的最优的划分方式,得出最终的子节点N1、 N2….Nm

步骤四:对子节点N1、N2….Nm分别继续执行2-3步,直到每个最终的子节点都足够“纯”。

从上述步骤可以看出,决策生成过程中有两个重要的问题:

  1. 对数据进行分割。
  2. 选择分裂特征。
  3. 什么时候停止分裂。

1. 对数据进行分割

根据属性值的类型进行划分:

如果值为 离散型 ,且不生成二叉决策树,则此时一个属性就是可以一个分支,比如:上图数据显示,婚姻状态为一个属性,而下面有三个值,单身、已婚、离婚,则这三个值都可以作为一个分类。

如果值为 离散型 ,且生成二叉决策树,可以按照 “属于此子集”和“不属于此子集”分成两个分支。还是像上面的婚姻状态,这可以按照已婚,和非婚,形成两个分支。

如果值为 连续性 ,可以确定一个值作为分裂点,按照大于分割点,小于或等于分割点生成两个分支,如上图数据,我可以按照6千元的点划分成:大于6千元和小于6千元。

2. 找到最好的分裂特征

决策树算法是一种“贪心”算法策略——只考虑在当前数据特征情况下的最好分割方式。

在某种意义上的局部 最优解 ,也就是说我只保证在当分裂的时候,能够保证数据最纯就好。

对于整体的数据集而言:按照所有的特征属性进行划分操作,对所有划分操作的结果集的“纯度”进行比较,选择“纯度”越高的特征属性作为当前需要分割的数据集进行分割操作。

决策树使用信息增益作为选择特征的依据,公式如下:

机器学习 | 决策树的生成过程是怎样?(一)

H(D)为:分割前的纯度。

H(D|A)为:在给定条件A下的纯度,两者之差为信息增益度。如果信息增益度越大,则H(D|A)越小,则代表结果集的数据越纯。

计算纯度的度量方式:Gini、信息熵、错误率。

一般情况下,选择信息熵和Gini系数,这三者的值越大,表示越“不纯”。

Gini:

机器学习 | 决策树的生成过程是怎样?(一)

信息熵:

机器学习 | 决策树的生成过程是怎样?(一)

错误率:

机器学习 | 决策树的生成过程是怎样?(一)

3. 什么时候停止分裂

一般情况有两种停止条件:

  1. 当每个子节点只有一种类型的时候停止构建。
  2. 当前节点中记录数小于某个阈值,同时迭代次数达到给定值时,停止构建过程。此时,使用 max(p(i))作为节点的对应类型。

方式一可能会使树的节点过多,导致过拟合(Overfiting)等问题。所以,比较常用的方式是使用方式二作为停止条件。

三、举例

数据集如下:

机器学习 | 决策树的生成过程是怎样?(一)

1. 对数据特征进行分割

  • 拥有房产(是、否)
  • 婚姻状态(单身、已婚、离婚)
  • 年收入(80、97.5)

机器学习 | 决策树的生成过程是怎样?(一)

2. 通过信息增益找到分割特征

首先,计算按照拥有房产这个特征进行划分的信息增益,使用错误率进行纯度的计算:

机器学习 | 决策树的生成过程是怎样?(一)

计算原始数据的纯度:

机器学习 | 决策树的生成过程是怎样?(一)

机器学习 | 决策树的生成过程是怎样?(一)

计算按拥有房产划分后的结果集数据纯度H(D|A):

机器学习 | 决策树的生成过程是怎样?(一)

机器学习 | 决策树的生成过程是怎样?(一)

机器学习 | 决策树的生成过程是怎样?(一)

H(D| X=有房产) 的计算方式:

机器学习 | 决策树的生成过程是怎样?(一)

机器学习 | 决策树的生成过程是怎样?(一)

H(D| X=无房产) 的计算方式:

机器学习 | 决策树的生成过程是怎样?(一)

机器学习 | 决策树的生成过程是怎样?(一)

计算信息增益度Gain(房产):

机器学习 | 决策树的生成过程是怎样?(一)

同理,可以计算:婚姻状态 年收入=97.5

Gain(婚姻) = 0.205

Gain(婚姻) =0.395

按照Gain越大,分割后的纯度越高,因此第一个分割属性为收入,并按照97.5进行划分。

机器学习 | 决策树的生成过程是怎样?(一)

左子树的结果集够纯,因此不需要继续划分。

接下来,对右子树年收入大于97.5的数据,继续选择特征进行划分,且不再考虑收入这个特征,方法如上,可以得到如图:

机器学习 | 决策树的生成过程是怎样?(一)

四、常见算法

ID3:

机器学习 | 决策树的生成过程是怎样?(一)

优点:决策树构建速度快;实现简单

缺点:

  • 计算依赖于特征数目较多的特征,而属性值最多的属性并不一定最优 。
  • ID3算法不是递增算法,ID3算法是单变量决策树,对于特征属性之间的关系不会考虑。
  • 抗噪性差。
  • 只适合小规模数据集,需要将数据放到内存中。

C4.5:

机器学习 | 决策树的生成过程是怎样?(一)

在ID3算法的基础上,进行算法优化提出的一种算法(C4.5),使用信息增益率来取代ID3中的信息增益。

CART(Classification And Regression Tree):

机器学习 | 决策树的生成过程是怎样?(一)

五、总结

  1. ID3和5算法均只适合在小规模数据集上使用。
  2. ID3和5算法都是单变量决策树当属性值取值比较多的时候,最好考虑C4.5算法,ID3得出的效果会比较差  决策树分类一般情况只适合小数据量的情况(数据可以放内存)  CART算法是三种算法中最常用的一种决策树构建算法(sklearn中仅支持CART)。
  3. 三种算法的区别仅仅只是对于当前树的评价标准不同而已,ID3使用信息增益、 5使用信息增益率、CART使用基尼系数。
  4. CART算法构建的一定是二叉树,ID3和5构建的不一定是二叉树。

本文由 @SincerityY 原创发布于人人都是产品经理。未经许可,禁止转载

题图来自Unsplash,基于CC0协议


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

运营笔记

运营笔记

类延昊 / 天津人民版社 / 2016-12-1 / CNY 39.80

运营是入门浅但学问深的行当。一个入门很久的人不见得能在11年内爬到塔尖,同样一个初入龙门的人占据高位也不见得非用11年。 到底该怎么做运营?如何做运营才不至于让自己忙死累死甚至茫然不知所措?如何和用户进行有效沟通?如何把握住处于塔尖20%的核心用户?如何强敌逼阵时快速找到突破口?如何挤破头皮提高转化率? 在这本书里,类类以自己常年战斗在一线摸爬滚打的经验给予了有效而真诚的解答。一起来看看 《运营笔记》 这本书的介绍吧!

XML 在线格式化
XML 在线格式化

在线 XML 格式化压缩工具

html转js在线工具
html转js在线工具

html转js在线工具

RGB CMYK 转换工具
RGB CMYK 转换工具

RGB CMYK 互转工具