深度学习框架 TensorFlow.NET 0.4.1,新增自动梯度计算

栏目: 软件资讯 · 发布时间: 5年前

内容简介:TensorFlow是一个深度学习框架,支持Linux平台,Windows平台,Mac平台,甚至手机移动设备等各种平台。TensorFlow提供了非常丰富的深度学习相关的API,可以说目前所有深度学习框架里,提供的API最全的,包括基本的...

TensorFlow是一个深度学习框架,支持 Linux 平台,Windows平台,Mac平台,甚至手机移动设备等各种平台。TensorFlow提供了非常丰富的深度学习相关的API,可以说目前所有深度学习框架里,提供的API最全的,包括基本的向量矩阵计算、各种优化算法、各种卷积神经网络和循环神经网络基本单元的实现、以及可视化的辅助 工具 、等等。

基于TensorFlow的API是可以做其它语言绑定的,目前只有 Python 语言绑定是谷歌公司官方推荐和支持的,实现的功能也是最权威最完整的。除了对Python的大力支持外,其它语言的绑定就显得非常弱小,几乎不能用。TensorFlow.NET是用C#语言对TensorFlow API进行绑定,并最大化保持Python的接口使用习惯,让其它模型代码能快速的迁移到.NET。

v0.4.1主要是新增了自动梯度计算功能。具体示例说明可以参考另一篇文章

文档地址:Document

仓库地址: Github

聊天室: Gitter

软件下载地址:NuGet


以上所述就是小编给大家介绍的《深度学习框架 TensorFlow.NET 0.4.1,新增自动梯度计算》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

深入浅出强化学习:原理入门

深入浅出强化学习:原理入门

郭宪、方勇纯 / 电子工业出版社 / 2018-1 / 79

《深入浅出强化学习:原理入门》用通俗易懂的语言深入浅出地介绍了强化学习的基本原理,覆盖了传统的强化学习基本方法和当前炙手可热的深度强化学习方法。开篇从最基本的马尔科夫决策过程入手,将强化学习问题纳入到严谨的数学框架中,接着阐述了解决此类问题最基本的方法——动态规划方法,并从中总结出解决强化学习问题的基本思路:交互迭代策略评估和策略改善。基于这个思路,分别介绍了基于值函数的强化学习方法和基于直接策略......一起来看看 《深入浅出强化学习:原理入门》 这本书的介绍吧!

CSS 压缩/解压工具
CSS 压缩/解压工具

在线压缩/解压 CSS 代码

Base64 编码/解码
Base64 编码/解码

Base64 编码/解码