Python学习案例之人脸检测识别

栏目: Python · 发布时间: 5年前

内容简介:随着科技的发展,人脸识别技术在许多领域得到的非常广泛的应用,手机支付、银行身份验证、手机人脸解锁等等。废话少说,这里我们使用 opencv 中自带了 haar人脸特征分类器,利用训练好的 haar 特征的 xml 文件,在图片上检测出人脸的坐标,利用这个坐标,我们可以将人脸区域剪切保存,也可以在原图上将人脸框出。

Python学习案例之人脸检测识别

前言

随着科技的发展,人脸识别技术在许多领域得到的非常广泛的应用,手机支付、银行身份验证、手机人脸解锁等等。

识别

废话少说,这里我们使用 opencv 中自带了 haar人脸特征分类器,利用训练好的 haar 特征的 xml 文件,在图片上检测出人脸的坐标,利用这个坐标,我们可以将人脸区域剪切保存,也可以在原图上将人脸框出。

代码实现:

# -*-coding:utf8-*-#
import os
import cv2
from PIL import Image, ImageDraw
from datetime import datetime

"""
分类器 https://github.com/opencv/opencv/tree/master/data/haarcascades
安装模块:pip install Pillow   pip install opencv-python
博客:https://blog.52itstyle.vip/archives/3771/
"""


def detectFaces(image_name):
    img = cv2.imread(image_name)
    face_cascade = cv2.CascadeClassifier(os.getcwd()+"\\haarcascade\\haarcascade_frontalface_alt.xml")
    if img.ndim == 3:
        gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    else:
        gray = img  # if语句:如果img维度为3,说明不是灰度图,先转化为灰度图gray,如果不为3,也就是2,原图就是灰度图

    faces = face_cascade.detectMultiScale(gray, 1.2, 5)  # 1.3和5是特征的最小、最大检测窗口,它改变检测结果也会改变
    result = []
    for (x, y, width, height) in faces:
        result.append((x, y, x + width, y + height))
    return result


# 保存人脸图
def saveFaces(image_name):
    faces = detectFaces(image_name)
    if faces:
        # 将人脸保存在save_dir目录下。
        # Image模块:Image.open获取图像句柄,crop剪切图像(剪切的区域就是detectFaces返回的坐标),save保存。
        save_dir = image_name.split('.')[0] + "_faces"
        os.mkdir(save_dir)
        count = 0
        for (x1, y1, x2, y2) in faces:
            file_name = os.path.join(save_dir, str(count) + ".jpg")
            Image.open(image_name).crop((x1, y1, x2, y2)).save(file_name)
            count += 1


if __name__ == '__main__':
    time1 = datetime.now()
    result = detectFaces(os.getcwd()+"\\images\\gaoyuanyuan.jpg")
    time2 = datetime.now()
    print("耗时:" + str(time2 - time1))
    if len(result) > 0:
        print("有人存在!!---》人数为:" + str(len(result)))
    else:
        print('视频图像中无人!!')

    drawFaces(os.getcwd()+"\\images\\", "hanxue.jpg")
    saveFaces(os.getcwd()+"\\images\\gaoyuanyuan.jpg")

识别效果图:

Python学习案例之人脸检测识别

多人识别效果:

Python学习案例之人脸检测识别

经过测试,最终选用了 haarcascade_frontalface_alt.xml 做人脸识别,识别率最高。

人脸检测分类器对比:

级联分类器的类型 XML文件名
人脸检测器(默认) haarcascade_frontalface_default.xml
人脸检测器(快速的Haar) haarcascade_frontalface_alt2.xml
人脸检测器(Tree) haarcascade_frontalface_alt_tree.xml
人脸检测器(Haar_1) haarcascade_frontalface_alt.xml

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

产品经理修炼之道

产品经理修炼之道

费杰 / 机械工业出版社华章公司 / 2012-7-30 / 59.00元

本书由资深产品经理、中国最大的产品经理沙龙Pmcaff创始人费杰亲自执笔,微软、腾讯、百度、新浪、搜狐、奇虎、阿里云、Evernote等国内外20余家大型互联网企业资深产品经理和技术专家联袂推荐。用系统化的方法论和丰富的实战案例解读了优秀产品经理所必须修炼的产品规划能力、产品设计能力、产品执行能力,以及思考、分析和解决问题的能力和方法,旨在为互联网产品经理打造核心竞争力提供实践指导。 全书一......一起来看看 《产品经理修炼之道》 这本书的介绍吧!

JS 压缩/解压工具
JS 压缩/解压工具

在线压缩/解压 JS 代码

RGB转16进制工具
RGB转16进制工具

RGB HEX 互转工具

UNIX 时间戳转换
UNIX 时间戳转换

UNIX 时间戳转换