谷歌开源机器学习数据集,可在 TensorFlow 直接调用

栏目: 数据库 · 发布时间: 5年前

内容简介:吴恩达说过,公共数据集为机器学习研究这枚火箭提供了动力,但将这些数据集放入机器学习管道就已经够难的了。编写供下载的一次性脚本,准备他们要用的源格式和复杂性不一的数据集,相信这种痛苦每个程序员都有过切身体会。但现在,你再也不会被这种痛苦困扰了。谷歌今天开源了一个机器学习数据集,可在 TensorFlow 直接调用,这为开发人员省去了不少麻烦。照例先放数据集:

吴恩达说过,公共数据集为机器学习研究这枚火箭提供了动力,但将这些数据集放入机器学习管道就已经够难的了。编写供下载的一次性脚本,准备他们要用的源格式和复杂性不一的数据集,相信这种痛苦每个 程序员 都有过切身体会。

但现在,你再也不会被这种痛苦困扰了。谷歌今天开源了一个机器学习数据集,可在 TensorFlow 直接调用,这为开发人员省去了不少麻烦。

照例先放数据集:

GitHub: https://github.com/tensorflow/datasets

今天,我们很高兴地推出 TensorFlow 数据集,它将作为 tf.data.Datasets 和 NumPy 数组向公众开放。它可以完成从获取源数据,到准备磁盘上的通用格式的所有琐碎工作,并使用 tf.data API 构建高性能输入管道,这些管道支持 TensorFlow 2.0,并可与 tf.keras 模型一起使用。我们推出了 29 个流行的研究 数据集 ,如 MNIST、Street View House Numbers、包含 10 亿数据的语言模型基准和大型电影评论数据集,并将在未来几个月推出更多数据集;我们也希望你可以 加入并贡献数据集

tl;dr

复制代码

# Install: pip install tensorflow-datasets
importtensorflow_datasetsastfds
mnist_data= tfds.load("mnist")
mnist_train, mnist_test = mnist_data["train"], mnist_data["test"]
assertisinstance(mnist_train, tf.data.Dataset)

在 Colab notebook 上试试 tfds

tfds.loadDatasetBuilder

每个数据集都作为 DatasetBuilder 公开,它会告诉你:

你可以直接对所有 DatasetBuilders 进行实例化或使 用 tfds.builder 字符串获取

复制代码

importtensorflow_datasetsastfds

#Fetchthe dataset directly
mnist = tfds.image.MNIST()
#orbystringname
mnist = tfds.builder('mnist')

# Describe the datasetwithDatasetInfo
assertmnist.info.features['image'].shape == (28,28,1)
assertmnist.info.features['label'].num_classes ==10
assertmnist.info.splits['train'].num_examples ==60000

# Download the data,prepareit,andwriteittodisk
mnist.download_and_prepare()

#Loaddatafromdiskastf.data.Datasets
datasets = mnist.as_dataset()
train_dataset, test_dataset = datasets['train'], datasets['test']
assertisinstance(train_dataset, tf.data.Dataset)

#Andconvert the DatasettoNumPy arraysifyou'd like
for example in tfds.as_numpy(train_dataset):
image, label = example['image'], example['label']
assert isinstance(image, np.array)
{1}

as_dataset()接受一个 batch_size 参数,它将提供批量示例,而不是一次一个示例。对于适合内存的小型数据集,你可以用 batch_size = -1 立即获取整个数据集作为 tf.Tensor。使用 tfds.as_numpy() 可以轻松地将所有 tf.data.Datasets 转换为 NumPy 数组的参数。

为方便起见,你可以使用 tfds.load 执行以上所有操作,tfds.load 按名称获取 DatasetBuilder,调用 download_and_prepare()以及 as_dataset()。

复制代码

importtensorflow_datasetsastfds

datasets= tfds.load("mnist")
train_dataset, test_dataset = datasets["train"], datasets["test"]
assertisinstance(train_dataset, tf.data.Dataset)

你也可以通过传递 with_info = True 轻松地从 tfds.load 获取 DatasetInfo 对象 。有关所有选项,请参阅 API 文档

数据集版本管理

每个数据集都是版本化的(builder.info.version),你大可放心,数据不会随意发生变化,且结果是可重现的。目前,我们保证如果数据发生变化,将增加版本。

请注意,尽管目前我们保证给定同一版本下的数据值和拆分是相同的,但不保证对同一版本的记录进行排序。

数据集配置

具有不同变体的数据集使用命名的 BuilderConfigs 进行配置。例如,大型电影评论数据集 ( tfds.text.IMDBReviews ) 不同的输入可能有不同的编码(例如,纯文本、字符编码或子词编码)。内置配置与数据集文档一起列出,可以通过字符串进行寻址,也可以传入你自己的配置。

复制代码

# See the built-in configs
configs = tfds.text.IMDBReviews.builder_configs
assert"bytes"in configs

# Address a built-in config with tfds.builder
imdb = tfds.builder("imdb_reviews/bytes")
# or when constructing the builder directly
imdb = tfds.text.IMDBReviews(config="bytes")
# or use your own custom configuration
my_encoder = tfds.features.text.ByteTextEncoder(additional_tokens=['hello'])
my_config = tfds.text.IMDBReviewsConfig(
name="my_config",
version="1.0.0",
text_encoder_config=tfds.features.text.TextEncoderConfig(encoder=my_encoder),
)
imdb = tfds.text.IMDBReviews(config=my_config)

请参阅有关添加数据集的文档中有关 数据集配置 的部分。

文本数据集和词汇表

由于编码和词汇文件不同,文本数据集通常很难处理。tensorflow-datasets 让这一过程变得更简单。它包含许多文本任务,包括三种 TextEncoders,且都支持 Unicode:

  • ByteTextEncoder 用于字节 / 字符级编码
  • TokenTextEncoder 用于基于词汇表文件的单词级编码
  • SubwordTextEncoder 用于子词级编码(以及针对特定文本语料库创建子词词汇的能力),可以字节级回退,因此它是完全可逆的。例如,“hello world”可以拆分为 [“he”,“llo”,“”,“wor”,“ld”],然后进行整数编码。子词是词级和字节级编码之间的媒介,在一些自然语言研究项目中很受欢迎。

可以通过 DatasetInfo 访问编码器及其词汇表大小:

复制代码

imdb = tfds.builder("imdb_reviews/subwords8k")

# Get the TextEncoder from DatasetInfo
encoder = imdb.info.features["text"].encoder
assert isinstance(encoder, tfds.features.text.SubwordTextEncoder)

# Encode, decode
ids = encoder.encode("Hello world")
assert encoder.decode(ids) =="Hello world"

# Get the vocabulary size
vocab_size = encoder.vocab_size

TensorFlow 和 TensorFlow 数据集都将在未来进一步改进文本支持。

入门

我们的 文档站点 是开始使用 tensorflow 数据集的最佳位置。以下是一些入门指南:

我们将在未来几个月内添加更多数据集,并希望社区能够加入。如果你需要什么数据集,请在 GitHub 创建话题 ,我们将对下一步应添加的数据集进行投票,讨论实施细节或寻求帮助。非常欢迎 Pull Requests!人人献出一点数据集,让社区变得更美好,把你的数据集贡献给 TFDS 声名大噪吧!

当获取数据变得简单,我们就能快乐地建模!


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

思考,快与慢

思考,快与慢

[美] 丹尼尔·卡尼曼 / 胡晓姣、李爱民、何梦莹 / 中信出版社 / 2012-7 / 69.00元

《纽约时报》2011年度十大好书 新书上市,连续20多周蝉联亚马逊、《纽约时报》畅销书排行榜前20名,上市至今超过7个月,横扫全球各大畅销书排行榜,稳居亚马逊总榜前50名 《经济学人》、《华尔街日报》、《卫报》、《纽约时报》、《金融时报》、《商业周刊》、《华盛顿邮报》、等国外权威媒体,《三联生活周刊》、《商学院》、《东方早报》等国内知名媒体争相报道,国内外读者好评如潮 人类究竟有......一起来看看 《思考,快与慢》 这本书的介绍吧!

URL 编码/解码
URL 编码/解码

URL 编码/解码

UNIX 时间戳转换
UNIX 时间戳转换

UNIX 时间戳转换

正则表达式在线测试
正则表达式在线测试

正则表达式在线测试