深入理解GCD之dispatch_group

栏目: IOS · 发布时间: 5年前

内容简介:原文链接之前已经介绍了接下来我们根据上面的流程来看一下dispatch_group的相关API

原文链接 深入理解GCD之dispatch_group

之前已经介绍了 dispatch_semaphore 的底层实现, dispatch_group 的实现是基于前者的。在看源码之前,我们先看一下我们是如何应用的。假设有这么场景:有一个A耗时操作,B和C两个网络请求和一个耗时操作C当ABC都执行完成后,刷新页面。我们可以用 dispatch_group 实现。关键如下:

- (void)viewDidLoad {
    [super viewDidLoad];
    
        __block NSInteger number = 0;
    
    dispatch_group_t group = dispatch_group_create();
    
    //A耗时操作
    dispatch_group_async(group, dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{
        sleep(3);
        number += 2222;
    });
    
    //B网络请求
    dispatch_group_enter(group);
    [self sendRequestWithCompletion:^(id response) {
        number += [response integerValue];
        dispatch_group_leave(group);
    }];
    
    //C网络请求
    dispatch_group_enter(group);
    [self sendRequestWithCompletion:^(id response) {
        number += [response integerValue];
        dispatch_group_leave(group);
    }];
    
    dispatch_group_notify(group, dispatch_get_main_queue(), ^{
        NSLog(@"%zd", number);
    });
}

- (void)sendRequestWithCompletion:(void (^)(id response))completion {
    //模拟一个网络请求
    dispatch_queue_t queue = dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0);
    dispatch_async(queue, ^{
        sleep(2);
        dispatch_async(dispatch_get_main_queue(), ^{
            if (completion) completion(@1111);
        });
    });
}
复制代码

接下来我们根据上面的流程来看一下dispatch_group的相关API

dispatch_group_create

dispatch_group_t
dispatch_group_create(void)
{
	return (dispatch_group_t)dispatch_semaphore_create(LONG_MAX);
}
复制代码

dispatch_group_create 其实就是创建了一个 valueLONG_MAXdispatch_semaphore 信号量

dispatch_group_async

void
dispatch_group_async(dispatch_group_t dg, dispatch_queue_t dq,
		dispatch_block_t db)
{
	dispatch_group_async_f(dg, dq, _dispatch_Block_copy(db),
			_dispatch_call_block_and_release);
}
复制代码

dispatch_group_async 只是 dispatch_group_async_f 的封装

dispatch_group_async_f

void
dispatch_group_async_f(dispatch_group_t dg, dispatch_queue_t dq, void *ctxt,
		dispatch_function_t func)
{
	dispatch_continuation_t dc;

	_dispatch_retain(dg);
	dispatch_group_enter(dg);

	dc = fastpath(_dispatch_continuation_alloc_cacheonly());
	if (!dc) {
		dc = _dispatch_continuation_alloc_from_heap();
	}

	dc->do_vtable = (void *)(DISPATCH_OBJ_ASYNC_BIT | DISPATCH_OBJ_GROUP_BIT);
	dc->dc_func = func;
	dc->dc_ctxt = ctxt;
	dc->dc_group = dg;

	// No fastpath/slowpath hint because we simply don't know
	if (dq->dq_width != 1 && dq->do_targetq) {
		return _dispatch_async_f2(dq, dc);
	}

	_dispatch_queue_push(dq, dc);
}
复制代码

从上面的代码我们可以看出 dispatch_group_async_fdispatch_async_f 相似。 dispatch_group_async_f 多了 dispatch_group_enter(dg); ,另外在 do_vtable 的赋值中 dispatch_group_async_f 多了一个 DISPATCH_OBJ_GROUP_BIT 的标记符。既然添加了 dispatch_group_enter 必定会存在 dispatch_group_leave 。在之前《深入理解GCD之dispatch_queue》介绍 _dispatch_continuation_pop 函数的源码中有一段代码如下:

_dispatch_client_callout(dc->dc_ctxt, dc->dc_func);
	if (dg) {
		//group需要进行调用dispatch_group_leave并释放信号
		dispatch_group_leave(dg);
		_dispatch_release(dg);
	}
复制代码

所以 dispatch_group_async_f 函数中的 dispatch_group_leave 是在 _dispatch_continuation_pop 函数中调用的。

这里概括一下 dispatch_group_async_f 的工作流程:

  1. 调用 dispatch_group_enter
  2. 将block和queue等信息记录到 dispatch_continuation_t 结构体中,并将它加入到group的链表中;
  3. _dispatch_continuation_pop 执行时会判断任务是否为group,是的话执行完任务再调用 dispatch_group_leave 以达到信号量的平衡。

dispatch_group_enter

void
dispatch_group_enter(dispatch_group_t dg)
{
	dispatch_semaphore_t dsema = (dispatch_semaphore_t)dg;

	(void)dispatch_semaphore_wait(dsema, DISPATCH_TIME_FOREVER);
}
复制代码

dispatch_group_enterdispatch_group_t 转换成 dispatch_semaphore_t ,并调用 dispatch_semaphore_wait ,原子性减1后,进入等待状态直到有信号唤醒。所以说 dispatch_group_enter就是对dispatch_semaphore_wait的封装

dispatch_group_leave

void
dispatch_group_leave(dispatch_group_t dg)
{
	dispatch_semaphore_t dsema = (dispatch_semaphore_t)dg;
	dispatch_atomic_release_barrier();
	long value = dispatch_atomic_inc2o(dsema, dsema_value);//dsema_value原子性加1
	if (slowpath(value == LONG_MIN)) {//内存溢出,由于dispatch_group_leave在dispatch_group_enter之前调用
		DISPATCH_CLIENT_CRASH("Unbalanced call to dispatch_group_leave()");
	}
	if (slowpath(value == dsema->dsema_orig)) {//表示所有任务已经完成,唤醒group
		(void)_dispatch_group_wake(dsema);
	}
}
复制代码

从上面的源代码中我们看到 dispatch_group_leavedispatch_group_t 转换成 dispatch_semaphore_t 后将 dsema_value 的值原子性加1。如果 valueLONG_MIN 程序crash;如果 value 等于 dsema_orig 表示所有任务已完成,调用 _dispatch_group_wake 唤醒group( _dispatch_group_wake 的用于和notify有关,我们会在后面介绍)。因为在 enter 的时候进行了原子性减1操作。所以在 leave 的时候需要原子性加1。

这里先说明一下 enterleave 之间的关系:

  1. dispatch_group_leave与dispatch_group_enter配对使用。当调用了 dispatch_group_enter 而没有调用 dispatch_group_leave 时,由于 value 不等于 dsema_orig 不会走到唤醒逻辑, dispatch_group_notify 中的任务无法执行或者 dispatch_group_wait 收不到信号而卡住线程。

  2. dispatch_group_enter必须在dispatch_group_leave之前出现。当 dispatch_group_leavedispatch_group_enter 多调用了一次或者说在 dispatch_group_enter 之前被调用的时候, dispatch_group_leave 进行原子性加1操作,相当于 valueLONGMAX+1 ,发生数据长度溢出,变成 LONG_MIN ,由于 value == LONG_MIN 成立,程序发生crash。

dispatch_group_notify

void
dispatch_group_notify(dispatch_group_t dg, dispatch_queue_t dq,
		dispatch_block_t db)
{
	dispatch_group_notify_f(dg, dq, _dispatch_Block_copy(db),
			_dispatch_call_block_and_release);
}
复制代码

dispatch_group_notifydispatch_group_notify_f 的封装,具体实现在后者。

dispatch_group_notify_f

void
dispatch_group_notify_f(dispatch_group_t dg, dispatch_queue_t dq, void *ctxt,
		void (*func)(void *))
{
	dispatch_semaphore_t dsema = (dispatch_semaphore_t)dg;
	struct dispatch_sema_notify_s *dsn, *prev;

	//封装dispatch_continuation_t结构体
	// FIXME -- this should be updated to use the continuation cache
	while (!(dsn = calloc(1, sizeof(*dsn)))) {
		sleep(1);
	}

	dsn->dsn_queue = dq;
	dsn->dsn_ctxt = ctxt;
	dsn->dsn_func = func;
	_dispatch_retain(dq);
	dispatch_atomic_store_barrier();
	//将结构体放到链表尾部,如果链表为空同时设置链表头部节点并唤醒group
	prev = dispatch_atomic_xchg2o(dsema, dsema_notify_tail, dsn);
	if (fastpath(prev)) {
		prev->dsn_next = dsn;
	} else {
		_dispatch_retain(dg);
		(void)dispatch_atomic_xchg2o(dsema, dsema_notify_head, dsn);
		if (dsema->dsema_value == dsema->dsema_orig) {//任务已经完成,唤醒group
			_dispatch_group_wake(dsema);
		}
	}
}
复制代码

所以 dispatch_group_notify 函数只是用链表把所有回调通知保存起来,等待调用。

_dispatch_group_wake

static long
_dispatch_group_wake(dispatch_semaphore_t dsema)
{
	struct dispatch_sema_notify_s *next, *head, *tail = NULL;
	long rval;
	//将dsema的dsema_notify_head赋值为NULL,同时将之前的内容赋给head
	head = dispatch_atomic_xchg2o(dsema, dsema_notify_head, NULL);
	if (head) {
		// snapshot before anything is notified/woken <rdar://problem/8554546>
		//将dsema的dsema_notify_tail赋值为NULL,同时将之前的内容赋给tail
		tail = dispatch_atomic_xchg2o(dsema, dsema_notify_tail, NULL);
	}
	//将dsema的dsema_group_waiters设置为0,并返回原来的值
	rval = dispatch_atomic_xchg2o(dsema, dsema_group_waiters, 0);
	if (rval) {
		//循环调用semaphore_signal唤醒当初等待group的信号量,使得dispatch_group_wait函数返回。
		// wake group waiters
#if USE_MACH_SEM
		_dispatch_semaphore_create_port(&dsema->dsema_waiter_port);
		do {
			kern_return_t kr = semaphore_signal(dsema->dsema_waiter_port);
			DISPATCH_SEMAPHORE_VERIFY_KR(kr);
		} while (--rval);
#elif USE_POSIX_SEM
		do {
			int ret = sem_post(&dsema->dsema_sem);
			DISPATCH_SEMAPHORE_VERIFY_RET(ret);
		} while (--rval);
#endif
	}
	if (head) {
		//获取链表,依次调用dispatch_async_f异步执行在notify函数中的任务即Block。
		// async group notify blocks
		do {
			dispatch_async_f(head->dsn_queue, head->dsn_ctxt, head->dsn_func);
			_dispatch_release(head->dsn_queue);
			next = fastpath(head->dsn_next);
			if (!next && head != tail) {
				while (!(next = fastpath(head->dsn_next))) {
					_dispatch_hardware_pause();
				}
			}
			free(head);
		} while ((head = next));
		_dispatch_release(dsema);
	}
	return 0;
}
复制代码

_dispatch_group_wake 主要的作用有两个:

  1. 调用semaphore_signal唤醒当初等待group的信号量,使得dispatch_group_wait函数返回。

  2. 获取链表,依次调用dispatch_async_f异步执行在notify函数中的任务即Block。

到这里我们已经差不多知道了 dispatch_group 工作过程,我们用一张图表示:

深入理解GCD之dispatch_group

dispatch_group_wait

long
dispatch_group_wait(dispatch_group_t dg, dispatch_time_t timeout)
{
	dispatch_semaphore_t dsema = (dispatch_semaphore_t)dg;

	if (dsema->dsema_value == dsema->dsema_orig) {//没有需要执行的任务
		return 0;
	}
	if (timeout == 0) {//返回超时
#if USE_MACH_SEM
		return KERN_OPERATION_TIMED_OUT;
#elif USE_POSIX_SEM
		errno = ETIMEDOUT;
		return (-1);
#endif
	}
	return _dispatch_group_wait_slow(dsema, timeout);
}
复制代码

dispatch_group_wait 用于等待group中的任务完成。

_dispatch_group_wait_slow

static long
_dispatch_group_wait_slow(dispatch_semaphore_t dsema, dispatch_time_t timeout)
{
	long orig;

again:
	// check before we cause another signal to be sent by incrementing
	// dsema->dsema_group_waiters
	if (dsema->dsema_value == dsema->dsema_orig) {
		return _dispatch_group_wake(dsema);
	}
	// Mach semaphores appear to sometimes spuriously wake up. Therefore,
	// we keep a parallel count of the number of times a Mach semaphore is
	// signaled (6880961).
	(void)dispatch_atomic_inc2o(dsema, dsema_group_waiters);
	// check the values again in case we need to wake any threads
	if (dsema->dsema_value == dsema->dsema_orig) {
		return _dispatch_group_wake(dsema);
	}

#if USE_MACH_SEM
	mach_timespec_t _timeout;
	kern_return_t kr;

	_dispatch_semaphore_create_port(&dsema->dsema_waiter_port);

	// From xnu/osfmk/kern/sync_sema.c:
	// wait_semaphore->count = -1; /* we don't keep an actual count */
	//
	// The code above does not match the documentation, and that fact is
	// not surprising. The documented semantics are clumsy to use in any
	// practical way. The above hack effectively tricks the rest of the
	// Mach semaphore logic to behave like the libdispatch algorithm.

	switch (timeout) {
	default:
		do {
			uint64_t nsec = _dispatch_timeout(timeout);
			_timeout.tv_sec = (typeof(_timeout.tv_sec))(nsec / NSEC_PER_SEC);
			_timeout.tv_nsec = (typeof(_timeout.tv_nsec))(nsec % NSEC_PER_SEC);
			kr = slowpath(semaphore_timedwait(dsema->dsema_waiter_port,
					_timeout));
		} while (kr == KERN_ABORTED);

		if (kr != KERN_OPERATION_TIMED_OUT) {
			DISPATCH_SEMAPHORE_VERIFY_KR(kr);
			break;
		}
		// Fall through and try to undo the earlier change to
		// dsema->dsema_group_waiters
	case DISPATCH_TIME_NOW:
		while ((orig = dsema->dsema_group_waiters)) {
			if (dispatch_atomic_cmpxchg2o(dsema, dsema_group_waiters, orig,
					orig - 1)) {
				return KERN_OPERATION_TIMED_OUT;
			}
		}
		// Another thread called semaphore_signal().
		// Fall through and drain the wakeup.
	case DISPATCH_TIME_FOREVER:
		do {
			kr = semaphore_wait(dsema->dsema_waiter_port);
		} while (kr == KERN_ABORTED);
		DISPATCH_SEMAPHORE_VERIFY_KR(kr);
		break;
	}
#elif USE_POSIX_SEM
//这部分代码省略
#endif

	goto again;
}
复制代码

从上面的代码我们发现 _dispatch_group_wait_slow_dispatch_semaphore_wait_slow 的逻辑很接近。都利用mach内核的semaphore进行信号的发送。区别在于 _dispatch_semaphore_wait_slow 在等待结束后是return,而 _dispatch_group_wait_slow 在等待结束是调用 _dispatch_group_wake 去唤醒这个group。

总结

  1. dispatch_group 是一个初始值为 LONG_MAX 的信号量,group中的任务完成是判断其 value 是否恢复成初始值。

  2. dispatch_group_enterdispatch_group_leave 必须成对使用并且支持嵌套。

  3. 如果 dispatch_group_enterdispatch_group_leave 多,由于 value 不等于 dsema_orig 不会走到唤醒逻辑, dispatch_group_notify 中的任务无法执行或者 dispatch_group_wait 收不到信号而卡住线程。如果是 dispatch_group_leave 多,则会引起崩溃。


以上所述就是小编给大家介绍的《深入理解GCD之dispatch_group》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

应用随机过程教程及在算法和智能计算中的随机模型

应用随机过程教程及在算法和智能计算中的随机模型

龚光鲁 / 清华大学出版社 / 2004-3 / 42.00元

应用随机过程教程及在算法和智能计算中的随机模型,ISBN:9787302069485,作者:龚光鲁,钱敏平著一起来看看 《应用随机过程教程及在算法和智能计算中的随机模型》 这本书的介绍吧!

在线进制转换器
在线进制转换器

各进制数互转换器

HTML 编码/解码
HTML 编码/解码

HTML 编码/解码

HSV CMYK 转换工具
HSV CMYK 转换工具

HSV CMYK互换工具