【Leetcode】102. 二叉树的层次遍历

栏目: 数据库 · 发布时间: 5年前

内容简介:给定一个二叉树,返回其按层次遍历的节点值。 (即逐层地,从左到右访问所有节点)。例如:给定二叉树: [3,9,20,null,null,15,7],

题目

给定一个二叉树,返回其按层次遍历的节点值。 (即逐层地,从左到右访问所有节点)。

例如:

给定二叉树: [3,9,20,null,null,15,7],

3
   / \
  9  20
    /  \
   15   7

返回其层次遍历结果:

[
  [3],
  [9,20],
  [15,7]
]

题解

我们数据结构的书上教的层序遍历,就是利用一个队列,不断的把左子树和右子树入队。但是这个题目还要要求按照层输出。所以关键的问题是: 如何确定是在同一层的

我们很自然的想到:

如果在入队之前,把上一层所有的节点出队,那么出队的这些节点就是上一层的列表。

由于队列是先进先出的数据结构,所以这个列表是从左到右的。

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
class Solution {
    public List<List<Integer>> levelOrder(TreeNode root) {
        List<List<Integer>> res = new LinkedList<>();
        if (root == null) {
            return res;
        }

        LinkedList<TreeNode> queue = new LinkedList<>();
        queue.add(root);
        while (!queue.isEmpty()) {
            int size = queue.size();
            List<Integer> currentRes = new LinkedList<>();
            // 当前队列的大小就是上一层的节点个数, 依次出队
            while (size > 0) {
                TreeNode current = queue.poll();
                if (current == null) {
                    continue;
                }
                currentRes.add(current.val);
                // 左子树和右子树入队.
                if (current.left != null) {
                    queue.add(current.left);
                }
                if (current.right != null) {
                    queue.add(current.right);
                }
                size--;
            }
            res.add(currentRes);
        }
        return res;
    }
}

这道题可不可以用非递归来解呢?

递归的子问题:遍历当前节点, 对于当前层, 遍历左子树的下一层层,遍历右子树的下一层

递归结束条件: 当前层,当前子树节点是null

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode(int x) { val = x; }
 * }
 */
class Solution {
    public List<List<Integer>> levelOrder(TreeNode root) {
        List<List<Integer>> res = new LinkedList<>();
        if (root == null) {
            return res;
        }
        levelOrderHelper(res, root, 0);
        return res;
    }

    /**
     * @param depth 二叉树的深度
     */
    private void levelOrderHelper(List<List<Integer>> res, TreeNode root, int depth) {
        if (root == null) {
            return;
        }
        
        if (res.size() <= depth) {
            // 当前层的第一个节点,需要new 一个list来存当前层.
            res.add(new LinkedList<>());
        }
        // depth 层,把当前节点加入
        res.get(depth).add(root.val);
        // 递归的遍历下一层.
        levelOrderHelper(res, root.left, depth + 1);
        levelOrderHelper(res, root.right, depth + 1);
    }
}

热门阅读


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

计算机和难解性

计算机和难解性

M.R 加里、D.S. 约翰逊 / 张立昂、沈泓 / 科学出版社 / 1987年 / 4.50

本书系统地介绍了NP完全性理论的概念和方法,全书共分为7章和两个附录。第一章粗略地介绍了计算复杂性的一些基本概念和NP完全性理论的意义。第二章至第五章介绍了NP完全性的基本理论和证明的方法。第六章集中研究NP难问题的近似算法。第七章概述了大量计算复杂性中的有关理论课题。 附录A收集了范围广泛、内容丰富的NP完全性和NP难的问题、附录B补充了NP问题的一些最新的进展,既有理论方面的,又有关于具体问题......一起来看看 《计算机和难解性》 这本书的介绍吧!

RGB转16进制工具
RGB转16进制工具

RGB HEX 互转工具

Base64 编码/解码
Base64 编码/解码

Base64 编码/解码

HSV CMYK 转换工具
HSV CMYK 转换工具

HSV CMYK互换工具