ENet —一种针对实时语义分割的深度神经架构

栏目: 数据库 · 发布时间: 5年前

内容简介:本文为 AI 研习社编译的技术博客,原标题 :ENet — A Deep Neural Architecture for Real-Time Semantic Segmentation

ENet —一种针对实时语义分割的深度神经架构

本文为 AI 研习社编译的技术博客,原标题 :

ENet — A Deep Neural Architecture for Real-Time Semantic Segmentation

作者 |  Arunava

翻译 | callofduty890              

校对 | 酱番梨        审核 | Pita       整理 | 立鱼王

原文链接:

https://towardsdatascience.com/enet-a-deep-neural-architecture-for-real-time-semantic-segmentation-2baa59cf97e9

ENet —一种针对实时语义分割的深度神经架构

Fig 1. A conversation between a semantic segmented guy and a toon

这是该论文的论文摘要:

ENet:用于实时语义分割的深度神经网络体系结构

作者:Adam Paszke

论文:https://arxiv.org/abs/1606.02147

    概论

ENet(高效神经网络)提供了实时按像素进行语义分割的能力。 ENet的速度提高了18倍,FLOP要求减少了75倍,参数减少了79倍,并且为现有模型提供了类似或更好的精度。 在CamVid,CityScapes和SUN数据集上测试。

ENet —一种针对实时语义分割的深度神经架构

ENet —一种针对实时语义分割的深度神经架构

    方法:

ENet —一种针对实时语义分割的深度神经架构

图3. ENet架构

以上是完整的网络架构。

它分为几个阶段,由表格中的水平线和每个块名称后的第一个数字突出显示。

报告输出尺寸为输入图像分辨率512 * 512

ENet —一种针对实时语义分割的深度神经架构

图4. ENet的每个模块都有详细说明

视觉表现:

- 初始模块是(a)中所示的模块

- 并且瓶颈模块显示在(b)

每个瓶颈模块包括:

- 1x1投影,降低了维度

- 主卷积层(conv)( - 常规,扩张或完整)(3x3)

- 1x1扩展

- 并且它们在所有卷积层之间放置批量标准化和PReLU

如果瓶颈模块是下采样,则将最大池化层添加到主分支。 此外,第一个1x1投影被替换为2x2卷积,stride = 2。

它们将激活无填充以匹配要素图的数量。

conv有时是不对称卷积,即5 * 1和1 * 5卷积的序列。

对于正则化器,他们使用Spatial Dropout:

- 在瓶颈2.0之前p = 0.01

- 完成之后p = 0.1

所以,

  1. 阶段1,2,3-编码器 - 由5个瓶颈模块组成(除了阶段3没有下采样)。

  2. 阶段4,5-解码器 - 阶段4包含3个瓶颈,阶段5包含2个瓶颈模块

  3. 接下来是一个fullconv,它以尺寸输出最终输出 - C * 512 * 512,其中C是滤波器的数量。

还有一些事实:

- 他们没有在任何预测中使用偏见项

- 在每个卷积层和激活之间,它们使用批量标准化

- 在解码器中,MaxPooling被MaxUnpooling取代

- 在解码器中,Padding被替换为Spatial Convolution而没有偏差

- 在最后一个(5.0)上采样模块中不使用池化索引

- 网络的最后一个模块是一个裸完全卷积,它占据了处理时间的大部分解码器。

- 每个侧支有一个空间丢失,第1阶段p = 0.01,之后阶段p = 0.1。

    结果

对ENet的表现进行了基准测试

- CamVid(道路场景)

- CityScapes(道路场景)

- SUN RGB-D(室内场景)

使用SegNet [2]作为基线,因为它是最快的分割模型之一。 使用cuDNN后端使用Torch7库。

使用NVIDIA Titan X GPU以及NVIDIA TX1嵌入式系统模块记录推理速度。 输入图像大小为640x360,速度超过10fps。

ENet —一种针对实时语义分割的深度神经架构 图5.使用SegNet作为基线的两个不同GPU的推理时间比较

ENet —一种针对实时语义分割的深度神经架构 图6. SegNet和ENet的硬件要求

    基准

使用  Adam.ENet非常快速地融合,在每个数据集上,使用4个Titan X GPU,训练只需要3-6个小时。

分两个阶段进行:

- 首先,他们训练编码器对输入图像的下采样区域进行分类。

- 然后附加解码器并训练网络以执行上采样和像素分类。

学习率 - 5e-4

L2重量衰减为2e-4

批量大小为10

自定义类权重方案定义为

ENet —一种针对实时语义分割的深度神经架构 图7所示。自定义类权重方案的公式

其中c = 1.02

并且类权重被限制在[1,50]的区间内

ENet —一种针对实时语义分割的深度神经架构 图8. CityScapes数据集的性能

ENet —一种针对实时语义分割的深度神经架构 图9. CamVid数据集的性能

    参考:

A. Paszke, A. Chaurasia, S. Kim, and E. Culurciello. Enet: A deep neural network architecture for real-time semantic segmentation. arXiv preprint arXiv:1606.02147, 2016.

V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep convolutional encoder-decoder architecture for image segmentation,” arXiv preprint arXiv:1511.00561, 2015.

我最近还转载了这篇论文,可以在这里找到:

https://github.com/iArunava/ENet-Real-Time-Semantic-Segmentation

想要继续查看该篇文章相关链接和参考文献?

点击【 ENet——一种针对实时语义分割的深度神经架构 】或长按下方地址访问:

https://ai.yanxishe.com/page/TextTranslation/1468

AI研习社今日推荐: 雷锋网雷锋网雷锋网 (公众号:雷锋网)

耐基梅隆大学 2019 春季《神经网络自然语言处理》是CMU语言技术学院和计算机学院联合开课,主要内容是教学生如何用神经网络做自然语言处理。神经网络对于语言建模任务而言,可以称得上是提供了一种强大的新工具,与此同时,神经网络能够改进诸多任务中的最新技术,将过去不容易解决的问题变得轻松简单。

加入小组免费观看视频: https://ai.yanxishe.com/page/groupDetail/33

ENet —一种针对实时语义分割的深度神经架构


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Intel系列微处理器体系结构、编程与接口

Intel系列微处理器体系结构、编程与接口

布雷, / 机械工业出版社 / 2005-4 / 99.00元

本书是讲述Intel微处理器的国外经典教材,已经多次再版,经过长期教学使用,吐故纳新,不断完善,内容丰富,体系完整。第6版中包含了微处理器领域的最新技术发展,涵盖了Pentium 4的内容。本书结合实例讲解工作原理,并给出小结和习题,既适合教学使用,也适合自学。书中许多实例都可以作为开发类似应用的模板和原型,极具实用价值。附录还给出了备查资料,供设计和调试汇编语言时使用。本书可作为高等院校计算机、......一起来看看 《Intel系列微处理器体系结构、编程与接口》 这本书的介绍吧!

XML、JSON 在线转换
XML、JSON 在线转换

在线XML、JSON转换工具

正则表达式在线测试
正则表达式在线测试

正则表达式在线测试

HEX CMYK 转换工具
HEX CMYK 转换工具

HEX CMYK 互转工具