非对抗式生成模型GLANN简单梳理

栏目: 数据库 · 发布时间: 5年前

内容简介:前段时间看到facebook发表了一个非对抗的生成模型GLANN(去年12月挂在arxiv上),号称用非对抗的方式也能生成1024的高清人脸,于是饶有兴致地阅读了一番,确实有点收获,但也有点失望。至于为啥失望,大家阅读下去就明白了。原论文:机器之心介绍:

前段时间看到facebook发表了一个非对抗的生成模型GLANN(去年12月挂在arxiv上),号称用非对抗的方式也能生成1024的高清人脸,于是饶有兴致地阅读了一番,确实有点收获,但也有点失望。至于为啥失望,大家阅读下去就明白了。

原论文: 《Non-Adversarial Image Synthesis with Generative Latent Nearest Neighbors》

机器之心介绍: 《为什么让GAN一家独大?Facebook提出非对抗式生成方法GLANN》

效果图:

非对抗式生成模型GLANN简单梳理

GLANN效果图

下面是对GLANN模型相关内容的一个简单梳理。

GLANN整个方法的基础是“隐式最大似然估计”,出自文章 《Implicit Maximum Likelihood Estimation》 ,简称“IMLE”。这是去年九月份才挂在arxiv上的一篇文章,让我非常意外。因为这个算法非常简单,我两年前就已经使用过,我一直觉得那是一个显然成立的方法,然而居然这么迟才被发布...(感觉错过了几千万)

IMLE的附录上给出了一大通复杂的数学推导,但笔者觉得其实没有什么必要。IMLE实际上就是狄拉克分布积分近似的结果而已。

总的来说,如下的采样过程:

\begin{equation}z\sim q(z),\quad x = G(z)\end{equation}

实际上就是假设$x$的分布为

\begin{equation}q(x)=\int \delta\big(x-G(z)\big)q(z)dz\end{equation}

其中$q(z)$一般取正态分布或者均匀分布,而$\delta(\cdot)$代表着(多元的)狄拉克函数。

注意$q(x)$也可以写成

\begin{equation}q(x)=\mathbb{E}_{z\sim q(z)}\big[\delta\big(x-G(z)\big)\big]\end{equation}

而$\delta(\cdot)$实际上就是方差趋于0的高斯分布:

\begin{equation}\delta(x)=\lim_{\sigma\to 0}\frac{1}{(2\pi\sigma^2)^{d/2}}\exp\left(-\frac{\Vert x - G(z)\Vert^2}{2\sigma^2}\right)\end{equation}

这样一来,我们不妨就让$\sigma$取个有限值,算完之后再让$\sigma\to 0$,即

\begin{equation}q(x)=\lim_{\sigma\to 0}\mathbb{E}_{z\sim q(z)}\left[\frac{1}{(2\pi\sigma^2)^{d/2}}\exp\left(-\frac{\Vert x - G(z)\Vert^2}{2\sigma^2}\right)\right]\end{equation}

然后,我们做最大似然,即以$-\int p(x)\log q(x)dx$为loss,$p(x)$是真实样本的分布:

\begin{equation}\begin{aligned}loss=&-\int p(x)\log \left\{\mathbb{E}_{z\sim q(z)}\left[\frac{1}{(2\pi\sigma^2)^{d/2}}\exp\left(-\frac{\Vert x - G(z)\Vert^2}{2\sigma^2}\right)\right]\right\}dx\\

=&\mathbb{E}_{x\sim p(x)}\left[-\log \left\{\mathbb{E}_{z\sim q(z)}\left[\frac{1}{(2\pi\sigma^2)^{d/2}}\exp\left(-\frac{\Vert x - G(z)\Vert^2}{2\sigma^2}\right)\right]\right\}\right]\\

\sim &\mathbb{E}_{x\sim p(x)}\left[-\log \left\{\mathbb{E}_{z\sim q(z)}\left[\exp\left(-\frac{\Vert x - G(z)\Vert^2}{2\sigma^2}\right)\right]\right\}\right]\end{aligned}\end{equation}

在最后一个式子中,我们已经省去了与优化无关的常数。

现在我们将$\mathbb{E}$转化为采样,即把$x_1,x_2,\dots,x_M\sim p(x)$和$z_1,z_2,\dots,z_N\sim q(z)$代入loss:

\begin{equation}\begin{aligned}loss\sim& -\frac{1}{M}\sum_{i=1}^M \log \left\{\frac{1}{N}\sum_{j=1}^N\exp\left(-\frac{\Vert x_i - G(z_j)\Vert^2}{2\sigma^2}\right)\right\}\\

\sim& -\frac{1}{M}\sum_{i=1}^M \log \left\{\sum_{j=1}^N\exp\left(-\frac{\Vert x_i - G(z_j)\Vert^2}{2\sigma^2}\right)\right\}\end{aligned}\end{equation}

《寻求一个光滑的最大值函数》 一文我们可以知道,$\text{logsumexp}$(指数、求和、然后取对数)实际上是$\max$的光滑近似,当$\sigma\to 0$时它就是$\max$,加上了负号就是$\min$,所以最终$\sigma\to 0$时的最简形式为:

\begin{equation}loss\sim \frac{1}{M}\sum_{i=1}^M \left(\min_{j=1}^N \Vert x_i - G(z_j)\Vert^2\right)\end{equation}

这便是IMLE所用的loss。(推导过程略长,只是因为写得详细,其实不难~)

因此,IMLE的具体流程中:

1、采样一批真样本$x_1,x_2,\dots,x_M$;
2、采样一批噪声$z_1,z_2,\dots,z_N$,得到一批假样本$\hat{x}_1,\hat{x}_2,\dots,\hat{x}_N$;
3、给每个真样本$x_i$找到它最接近的假样本$\hat{x}_{\rho(i)}$;
4、最小化平均距离$\frac{1}{M}\sum\limits_{i=1}^M \Vert x_i - \hat{x}_{\rho(i)}\Vert^2$。

抛开推导过程不讲,其实这个算法是很朴素的:假如每一张真样本都可以在假样本中找到足够接近的那个,那不就说明假样本生成得也很不错了吗?所以我说这个算法怎么这么迟才成文,太不可思议了。

然后看看效果。算法的原理没毛病,但问题在于上面的算法中“最接近”用到了l2距离,而对于图像来说l2并不是一个好的距离,所以可以想象这个方法跟VAE一样有着模糊的毛病。事实上如果看CelebA的效果,它连VAE都比不上:

非对抗式生成模型GLANN简单梳理

IMLE在CelebA上的效果图

代码: https://github.com/bojone/gan/blob/master/imle.py

其实这个思想还可以推广到一般的散度优化,比如我们可以用

\begin{equation}KL(q(x)\Vert p(x))=\int q(x)\log \frac{q(x)}{p(x)}dx=\mathbb{E}_{x\sim q(x)}\big[\log q(x)-\log p(x)\big]\end{equation}

做优化目标,然后$\log q(x)、\log p(x)$按照同样的方法进行处理,那么结果是:

\begin{equation}loss\sim -\frac{1}{M}\sum_{i=1}^M \left(\min_{j=1}^N \Vert G(z_i) - x_j\Vert^2 - \min_{j=1}^K \Vert G(z_i) - G(z_j)\Vert^2\right)\end{equation}

或者设置一个margin $m$,会使得效果更好些:

\begin{equation}loss\sim -\frac{1}{M}\sum_{i=1}^M \left(\min_{j=1}^N \Vert G(z_i) - x_j\Vert^2 + \text{relu}\left(m - \min_{j=1}^K \Vert G(z_i) - G(z_j)\Vert^2\right)\right)\end{equation}

注意这里要采样两批假样本,否则第二项就没有意义了(同一批样本内,第二项总是0),第二项是用来防止mode callopse的。这个新算法的流程是:

1、采样一批真样本$x_1,x_2,\dots,x_M$;
2、采样一批噪声$z_1,z_2,\dots,z_N$,得到一批假样本$\hat{x}_1,\hat{x}_2,\dots,\hat{x}_N$;
3、采样另一批噪声$z_{N+1},z_{N+2},\dots,z_{N+K}$,得到另一批假样本$\hat{x}_{N+1},\hat{x}_{N+2},\dots,\hat{x}_{N+K}$;
4、给每个假样本$\hat{x}_i$($1\leq i\leq N$)找到它最接近的真样本$x_{\rho_1(i)}$;
5、给每个假样本$\hat{x}_i$($1\leq i\leq N$)在$\hat{x}_{N+1},\hat{x}_{N+2},\dots,\hat{x}_{N+K}$中找到它最接近的假样本$x_{N+\rho_2(i)}$;
6、最小化“真-假”距离,同时最大化“假-假”距离,即上面的loss。

效果图:

非对抗式生成模型GLANN简单梳理

另一种IMLE在CelebA上的效果图

都差不多...

回到IMLE本身的讨论,可以想象,IMLE效果比较差的主要原因是用了l2距离。那么,如果换成其他距离呢?对于图像真实性来说,有没有现成的loss函数可以用呢?

还真有,它就是perceptual loss!这个perceptual loss来源于风格迁移,来源应该是 《Perceptual Losses for Real-Time Style Transfer and Super-Resolution》 。这个perceptual loss算起来有点复杂,它需要一个训练好的ImageNet模型,简单起见一般用VGG,然后算出它的最后面几个隐藏层向量,然后分别算因层向量的l2距离和Gram矩阵的l2距离,最后加起来。

这个距离在风格迁移任务中效果还不错,但是算起来有些复杂,而且更像是一个工程产物,而不是理论推导的结果,因此我并不喜欢,也就没有兴趣详细写下来了。总之,可以用perceptual loss结合IMLE的方式:

\begin{equation}loss\sim \frac{1}{M}\sum_{i=1}^M \left(\min_{j=1}^N d_{perceptual}\big(x_i,G(z_j)\big)\right)\label{eq:perceptual-1}\end{equation}

直接优化目标$\eqref{eq:perceptual-1}$理论上没有什么问题,但是计算量很大,因为我们说了perceptual loss算起来很复杂,需要用一个现成的ImageNet模型来计算,假如batch size是64,那么我们每个batch要算$64^2=4096$次perceptual loss,然后取最小,将会慢到难以接受,甚至根本跑不起来。

所以,GLANN还用到了一个称为GLO的技巧,它来自文章 《Optimizing the latent space of generative networks》

GLO其实也是一个极为简单的东西,然后又写了一篇文章...GLO根本没有打算做生成模型,GLO只想得到一个低维嵌入。假设真样本集为$x_1,x_2,\dots,x_M$,那么GLO的优化目标是

\begin{equation}\mathop{\arg\min}_{G,\hat{z}_1,\dots,\hat{z}_M}\frac{1}{M}\sum_{i=1}^M d\big(x_i, G(\hat{z}_i)\big)\quad \text{s.t.}\quad \Vert z_i\Vert=1\end{equation}

GLO把$\hat{z}_1,\dots,\hat{z}_M$都拿去优化了,这相当于一个Embedding层,训练出每张图片的Embedding。整个模型可以变化的地方是对Embedding的约束以及所用的度量$d$。对于GLANN来说,用的就是perceptual loss:

\begin{equation}\mathop{\arg\min}_{G,\hat{z}_1,\dots,\hat{z}_M}\frac{1}{M}\sum_{i=1}^M d_{perceptual}\big(x_i, G(\hat{z}_i)\big)\quad \text{s.t.}\quad \Vert z_i\Vert=1\end{equation}

现在有了$\hat{z}_1,\dots,\hat{z}_M$,那么$G(\hat{z}_i)$就能生成图片。现在只需要将$\hat{z}_1,\dots,\hat{z}_M$当作原始图片,然后用IMLE搞一下(这时候就可以用l2了):

\begin{equation}\mathop{\arg\min}_{T}\frac{1}{M}\sum_{i=1}^M \left(\min_{j=1}^N \Vert \hat{z}_i - T(z_j)\Vert^2\right)\end{equation}

就得到生成模型了。完整的生成过程是:

\begin{equation}z\sim q(z)\quad\xrightarrow{\quad T\quad }\quad \hat{z}_i \quad \xrightarrow{\quad G\quad }\quad x_i\end{equation}

到此,我们把GLANN这个模型给讲完了。总的来说,这是个综合了几个技巧的模型,至于效果,看开头的图就行了,其实我觉得效果也不是特别好,背景总是很花。当然,比纯IMLE或GLO要好,这是毋庸置疑的。

GLANN的主要改进是用perceptual loss替换了l2距离,其实这个替换在很多模型都应该可以使用,我猜也可以用到VAE中,只不过perceptual loss太工程化,我感觉没有什么意思,所以就没兴趣再深入研究它了。另一方面,GLANN论文中报告了它在某些数据集上的FID的优势,这看起来很不错,但实际上是不公平的。因为FID的计算本来就借助于ImageNet模型,而GLANN的loss也用到了ImageNet模型,所以GLANN的生成肯定是对FID有优势的。

其实,完全可以用FID作为loss,然后训练一个GLO,然后再训练IMLE,得到一个生成模型。这样做出来的生成模型的FID肯定很低,然而这并没有什么意义,因为图片的真实性都未能得到保证。

转载到请包括本文地址: https://kexue.fm/archives/6394

如果您还有什么疑惑或建议,欢迎在下方评论区继续讨论。

如果您觉得本文还不错,欢迎/本文。打赏并非要从中获得收益,而是希望知道科学空间获得了多少读者的真心关注。当然,如果你无视它,也不会影响你的阅读。再次表示欢迎和感谢!


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Maven实战

Maven实战

许晓斌 / 机械工业出版社 / 2010年12月 / 65.00元

你是否早已厌倦了日复一日的手工构建工作?你是否对各个项目风格迥异的构建系统感到恐惧?Maven——这一Java社区事实标准的项目管理工具,能帮你从琐碎的手工劳动中解脱出来,帮你规范整个组织的构建系统。不仅如此,它还有依赖管理、自动生成项目站点等超酷的特性,已经有无数的开源项目使用它来构建项目并促进团队交流,每天都有数以万计的开发者在访问中央仓库以获取他们需要的依赖。 本书内容全面而系统,Ma......一起来看看 《Maven实战》 这本书的介绍吧!

SHA 加密
SHA 加密

SHA 加密工具

XML、JSON 在线转换
XML、JSON 在线转换

在线XML、JSON转换工具

UNIX 时间戳转换
UNIX 时间戳转换

UNIX 时间戳转换