内容简介:最近学习了Redis,对其内部结构较为感兴趣,为了进一步了解其运行原理,我打算自己动手用C++写一个redis。这是我第一次造轮子,所以纪念一下 ^ _ ^。上节已经实现了小型Redis的基本功能,为了完善其功能并且锻炼一下自己的数据结构与算法,我打算参考
最近学习了Redis,对其内部结构较为感兴趣,为了进一步了解其运行原理,我打算自己动手用C++写一个redis。这是我第一次造轮子,所以纪念一下 ^ _ ^。
源码github链接 ,项目现在实现了客户端与服务器的链接与交互,以及一些 Redis 的基本命令,下面是测试结果:
(左边是服务端,右边是客户端)
上节已经实现了小型Redis的基本功能,为了完善其功能并且锻炼一下自己的数据结构与算法,我打算参考 《Redis设计与实现》 一书优化其中的数据结构与算法从而完善自己的项目。
本章讲解的是项目中B树与hash的引入。
B树的引入
在上一章中,我们的数据库使用的是原生的map结构,为了提高数据库的增删改查效率,这里我将其改为使用B_树这一数据结构。
B树的具体实现方法如下:
其中主要函数为
(1)void insert(int k,string stt) 向B_树中插入一个关键字以及该关键字对应的value的值。
(2)string getone(int k) 通过关键字获取其对应的value的值。
// A BTree node
class BTreeNode
{
int *keys; // An array of keys
string* strs;//value的类型使用string数组
int t; // Minimum degree (defines the range for number of keys)
BTreeNode **C; // An array of child pointers
int n; // Current number of keys
bool leaf; // Is true when node is leaf. Otherwise false
public:
BTreeNode(int _t, bool _leaf); // Constructor
string getOne(int k);
// A function to traverse all nodes in a subtree rooted with this node
void traverse();
// A function to search a key in subtree rooted with this node.
BTreeNode *search(int k); // returns NULL if k is not present.
// A function that returns the index of the first key that is greater
// or equal to k
int findKey(int k);
// A utility function to insert a new key in the subtree rooted with
// this node. The assumption is, the node must be non-full when this
// function is called
void insertNonFull(int k,string stt);
// A utility function to split the child y of this node. i is index
// of y in child array C[]. The Child y must be full when this
// function is called
void splitChild(int i, BTreeNode *y);
// A wrapper function to remove the key k in subtree rooted with
// this node.
void remove(int k);
// A function to remove the key present in idx-th position in
// this node which is a leaf
void removeFromLeaf(int idx);
// A function to remove the key present in idx-th position in
// this node which is a non-leaf node
void removeFromNonLeaf(int idx);
// A function to get the predecessor of the key- where the key
// is present in the idx-th position in the node
int getPred(int idx);
// A function to get the successor of the key- where the key
// is present in the idx-th position in the node
int getSucc(int idx);
// A function to fill up the child node present in the idx-th
// position in the C[] array if that child has less than t-1 keys
void fill(int idx);
// A function to borrow a key from the C[idx-1]-th node and place
// it in C[idx]th node
void borrowFromPrev(int idx);
// A function to borrow a key from the C[idx+1]-th node and place it
// in C[idx]th node
void borrowFromNext(int idx);
// A function to merge idx-th child of the node with (idx+1)th child of
// the node
void merge(int idx);
// Make BTree friend of this so that we can access private members of
// this class in BTree functions
friend class BTree;
};
class BTree
{
BTreeNode *root; // Pointer to root node
int t; // Minimum degree
public:
// Constructor (Initializes tree as empty)
BTree(int _t)
{
root = NULL;
t = _t;
}
void traverse()
{
if (root != NULL) root->traverse();
}
// function to search a key in this tree
//查找这个关键字是否在树中
BTreeNode* search(int k)
{
return (root == NULL)? NULL : root->search(k);
}
// The main function that inserts a new key in this B-Tree
void insert(int k,string stt);
// The main function that removes a new key in thie B-Tree
void remove(int k);
string getone(int k){
string ss=root->getOne(k);
return ss;
}
};
BTreeNode::BTreeNode(int t1, bool leaf1)
{
// Copy the given minimum degree and leaf property
t = t1;
leaf = leaf1;
// Allocate memory for maximum number of possible keys
// and child pointers
keys = new int[2*t-1];
strs= new string[2*t-1];
C = new BTreeNode *[2*t];
// Initialize the number of keys as 0
n = 0;
}
// A utility function that returns the index of the first key that is
// greater than or equal to k
//查找关键字的下标
int BTreeNode::findKey(int k)
{
int idx=0;
while (idx<n && keys[idx] < k)
++idx;
return idx;
}
string BTreeNode::getOne(int k){
int idx = findKey(k);
string s=strs[idx];
//cout<<"idx:"<<idx<<endl;
return s;
}
// A function to remove the key k from the sub-tree rooted with this node
void BTreeNode::remove(int k)
{
int idx = findKey(k);
cout<<idx<<endl;
cout<<keys[idx]<<endl;
// The key to be removed is present in this node
if (idx < n && keys[idx] == k)
{
// If the node is a leaf node - removeFromLeaf is called
// Otherwise, removeFromNonLeaf function is called
if (leaf)
removeFromLeaf(idx);
else
removeFromNonLeaf(idx);
}
else
{
// If this node is a leaf node, then the key is not present in tree
if (leaf)
{
cout << "The key "<< k <<" is does not exist in the tree\n";
return;
}
// The key to be removed is present in the sub-tree rooted with this node
// The flag indicates whether the key is present in the sub-tree rooted
// with the last child of this node
bool flag = ( (idx==n)? true : false );
// If the child where the key is supposed to exist has less that t keys,
// we fill that child
if (C[idx]->n < t)
fill(idx);
// If the last child has been merged, it must have merged with the previous
// child and so we recurse on the (idx-1)th child. Else, we recurse on the
// (idx)th child which now has atleast t keys
if (flag && idx > n)
C[idx-1]->remove(k);
else
C[idx]->remove(k);
}
return;
}
// A function to remove the idx-th key from this node - which is a leaf node
void BTreeNode::removeFromLeaf (int idx)
{
// Move all the keys after the idx-th pos one place backward
for (int i=idx+1; i<n; ++i){
keys[i-1] = keys[i];
strs[i-1]=strs[i];
}
// Reduce the count of keys
n--;
return;
}
// A function to remove the idx-th key from this node - which is a non-leaf node
void BTreeNode::removeFromNonLeaf(int idx)
{
int k = keys[idx];
// If the child that precedes k (C[idx]) has atleast t keys,
// find the predecessor 'pred' of k in the subtree rooted at
// C[idx]. Replace k by pred. Recursively delete pred
// in C[idx]
if (C[idx]->n >= t)
{
int pred = getPred(idx);
keys[idx] = pred;
C[idx]->remove(pred);
}
// If the child C[idx] has less that t keys, examine C[idx+1].
// If C[idx+1] has atleast t keys, find the successor 'succ' of k in
// the subtree rooted at C[idx+1]
// Replace k by succ
// Recursively delete succ in C[idx+1]
else if (C[idx+1]->n >= t)
{
int succ = getSucc(idx);
keys[idx] = succ;
C[idx+1]->remove(succ);
}
// If both C[idx] and C[idx+1] has less that t keys,merge k and all of C[idx+1]
// into C[idx]
// Now C[idx] contains 2t-1 keys
// Free C[idx+1] and recursively delete k from C[idx]
else
{
merge(idx);
C[idx]->remove(k);
}
return;
}
// A function to get predecessor of keys[idx]
int BTreeNode::getPred(int idx)
{
// Keep moving to the right most node until we reach a leaf
BTreeNode *cur=C[idx];
while (!cur->leaf)
cur = cur->C[cur->n];
// Return the last key of the leaf
return cur->keys[cur->n-1];
}
int BTreeNode::getSucc(int idx)
{
// Keep moving the left most node starting from C[idx+1] until we reach a leaf
BTreeNode *cur = C[idx+1];
while (!cur->leaf)
cur = cur->C[0];
// Return the first key of the leaf
return cur->keys[0];
}
// A function to fill child C[idx] which has less than t-1 keys
void BTreeNode::fill(int idx)
{
// If the previous child(C[idx-1]) has more than t-1 keys, borrow a key
// from that child
if (idx!=0 && C[idx-1]->n>=t)
borrowFromPrev(idx);
// If the next child(C[idx+1]) has more than t-1 keys, borrow a key
// from that child
else if (idx!=n && C[idx+1]->n>=t)
borrowFromNext(idx);
// Merge C[idx] with its sibling
// If C[idx] is the last child, merge it with with its previous sibling
// Otherwise merge it with its next sibling
else
{
if (idx != n)
merge(idx);
else
merge(idx-1);
}
return;
}
// A function to borrow a key from C[idx-1] and insert it
// into C[idx]
void BTreeNode::borrowFromPrev(int idx)
{
BTreeNode *child=C[idx];
BTreeNode *sibling=C[idx-1];
// The last key from C[idx-1] goes up to the parent and key[idx-1]
// from parent is inserted as the first key in C[idx]. Thus, the loses
// sibling one key and child gains one key
// Moving all key in C[idx] one step ahead
for (int i=child->n-1; i>=0; --i){
child->keys[i+1] = child->keys[i];
child->strs[i+1]=child->strs[i];
}
// If C[idx] is not a leaf, move all its child pointers one step ahead
if (!child->leaf)
{
for(int i=child->n; i>=0; --i)
child->C[i+1] = child->C[i];
}
// Setting child's first key equal to keys[idx-1] from the current node
child->keys[0] = keys[idx-1];
child->strs[0]=strs[idx-1];
// Moving sibling's last child as C[idx]'s first child
if (!leaf)
child->C[0] = sibling->C[sibling->n];
// Moving the key from the sibling to the parent
// This reduces the number of keys in the sibling
keys[idx-1] = sibling->keys[sibling->n-1];
strs[idx-1] = sibling->strs[sibling->n-1];
child->n += 1;
sibling->n -= 1;
return;
}
// A function to borrow a key from the C[idx+1] and place
// it in C[idx]
void BTreeNode::borrowFromNext(int idx)
{
BTreeNode *child=C[idx];
BTreeNode *sibling=C[idx+1];
// keys[idx] is inserted as the last key in C[idx]
child->keys[(child->n)] = keys[idx];
child->strs[(child->n)] = strs[idx];
// Sibling's first child is inserted as the last child
// into C[idx]
if (!(child->leaf))
child->C[(child->n)+1] = sibling->C[0];
//The first key from sibling is inserted into keys[idx]
keys[idx] = sibling->keys[0];
strs[idx] = sibling->strs[0];
// Moving all keys in sibling one step behind
for (int i=1; i<sibling->n; ++i)
sibling->strs[i-1] = sibling->strs[i];
// Moving the child pointers one step behind
if (!sibling->leaf)
{
for(int i=1; i<=sibling->n; ++i)
sibling->C[i-1] = sibling->C[i];
}
// Increasing and decreasing the key count of C[idx] and C[idx+1]
// respectively
child->n += 1;
sibling->n -= 1;
return;
}
// A function to merge C[idx] with C[idx+1]
// C[idx+1] is freed after merging
void BTreeNode::merge(int idx)
{
BTreeNode *child = C[idx];
BTreeNode *sibling = C[idx+1];
// Pulling a key from the current node and inserting it into (t-1)th
// position of C[idx]
child->keys[t-1] = keys[idx];
child->strs[t-1] = strs[idx];
int i;
// Copying the keys from C[idx+1] to C[idx] at the end
for (i=0; i<sibling->n; ++i){
child->strs[i+t] = sibling->strs[i];
}
// Copying the child pointers from C[idx+1] to C[idx]
if (!child->leaf)
{
for(i=0; i<=sibling->n; ++i)
child->C[i+t] = sibling->C[i];
}
// Moving all keys after idx in the current node one step before -
// to fill the gap created by moving keys[idx] to C[idx]
for (i=idx+1; i<n; ++i){
keys[i-1] = keys[i];
strs[i-1] = strs[i];
}
// Moving the child pointers after (idx+1) in the current node one
// step before
for (i=idx+2; i<=n; ++i)
C[i-1] = C[i];
// Updating the key count of child and the current node
child->n += sibling->n+1;
n--;
// Freeing the memory occupied by sibling
delete(sibling);
return;
}
// The main function that inserts a new key in this B-Tree
void BTree::insert(int k,string stt)
{
// If tree is empty
if (root == NULL)
{
// Allocate memory for root
root = new BTreeNode(t, true);
root->keys[0] = k; // Insert key
root->strs[0]=stt;
root->n = 1; // Update number of keys in root
}
else // If tree is not empty
{
// If root is full, then tree grows in height
if (root->n == 2*t-1)
{
// Allocate memory for new root
BTreeNode *s = new BTreeNode(t, false);
// Make old root as child of new root
s->C[0] = root;
// Split the old root and move 1 key to the new root
s->splitChild(0, root);
// New root has two children now. Decide which of the
// two children is going to have new key
int i = 0;
if (s->keys[0] < k)
i++;
s->C[i]->insertNonFull(k,stt);
// Change root
root = s;
}
else // If root is not full, call insertNonFull for root
root->insertNonFull(k,stt);
}
}
// A utility function to insert a new key in this node
// The assumption is, the node must be non-full when this
// function is called
void BTreeNode::insertNonFull(int k,string stt)
{
// Initialize index as index of rightmost element
int i = n-1;
// If this is a leaf node
if (leaf == true)
{
// The following loop does two things
// a) Finds the location of new key to be inserted
// b) Moves all greater keys to one place ahead
while (i >= 0 && keys[i] > k)
{
keys[i+1] = keys[i];
strs[i+1] = strs[i];
i--;
}
// Insert the new key at found location
keys[i+1] = k;
strs[i+1]=stt;
n = n+1;
}
else // If this node is not leaf
{
// Find the child which is going to have the new key
while (i >= 0 && keys[i] > k)
i--;
// See if the found child is full
if (C[i+1]->n == 2*t-1)
{
// If the child is full, then split it
splitChild(i+1, C[i+1]);
// After split, the middle key of C[i] goes up and
// C[i] is splitted into two. See which of the two
// is going to have the new key
if (keys[i+1] < k)
i++;
}
C[i+1]->insertNonFull(k,stt);
}
}
// A utility function to split the child y of this node
// Note that y must be full when this function is called
void BTreeNode::splitChild(int i, BTreeNode *y)
{
// Create a new node which is going to store (t-1) keys
// of y
BTreeNode *z = new BTreeNode(y->t, y->leaf);
z->n = t - 1;
int j;
// Copy the last (t-1) keys of y to z
for (j = 0; j < t-1; j++){
z->keys[j] = y->keys[j+t];
z->strs[j] = y->strs[j+t];
}
// Copy the last t children of y to z
if (y->leaf == false)
{
for (int j = 0; j < t; j++)
z->C[j] = y->C[j+t];
}
// Reduce the number of keys in y
y->n = t - 1;
// Since this node is going to have a new child,
// create space of new child
for (j = n; j >= i+1; j--)
C[j+1] = C[j];
// Link the new child to this node
C[i+1] = z;
// A key of y will move to this node. Find location of
// new key and move all greater keys one space ahead
for (j = n-1; j >= i; j--){
strs[j+1] = strs[j];
}
// Copy the middle key of y to this node
keys[i] = y->keys[t-1];
strs[i] = y->strs[t-1];
// Increment count of keys in this node
n = n + 1;
}
// Function to traverse all nodes in a subtree rooted with this node
void BTreeNode::traverse()
{
// There are n keys and n+1 children, travers through n keys
// and first n children
int i;
for (i = 0; i < n; i++)
{
// If this is not leaf, then before printing key[i],
// traverse the subtree rooted with child C[i].
if (leaf == false)
C[i]->traverse();
cout << " " << keys[i];
}
// Print the subtree rooted with last child
if (leaf == false)
C[i]->traverse();
}
// Function to search key k in subtree rooted with this node
BTreeNode *BTreeNode::search(int k)
{
// Find the first key greater than or equal to k
int i = 0;
while (i < n && k > keys[i])
i++;
// If the found key is equal to k, return this node
if (keys[i] == k)
return this;
// If key is not found here and this is a leaf node
if (leaf == true)
return NULL;
// Go to the appropriate child
return C[i]->search(k);
}
void BTree::remove(int k)
{
if (!root)
{
cout << "The tree is empty\n";
return;
}
// Call the remove function for root
root->remove(k);
// If the root node has 0 keys, make its first child as the new root
// if it has a child, otherwise set root as NULL
if (root->n==0)
{
BTreeNode *tmp = root;
if (root->leaf)
root = NULL;
else
root = root->C[0];
// Free the old root
delete tmp;
}
return;
}
hash的引入
由于客户端传入的是键值对,考虑到B_树的性质以及数据库的效率,我将作为键key的字符串的值hash后作为B_树中的关键字进行存储,并且仿照关键字数组开辟了一个字符串数组存储值value的值。
因此get和set命令的实现做了如下的改动
int DJBHash(string str)
{
unsigned int hash = 5381;
for(int i=0;i<str.length();i++)
{
hash += (hash << 5) + str[i];
}
return (hash & 0x7FFFFFFF)%1000;
}
//get命令
void getCommand(Server*server,Client*client,string key,string&value){
//取值的时候现将key hash一下,然后再进行取值
int k=DJBHash(key);
string ss=client->db->getone(k);
if(ss==""){
cout<<"get null"<<endl;
}else{
value=ss;
}
}
//set命令
void setCommand(Server*server,Client*client,string key,string&value){
//client->db.insert(pair<string,string>(key,value));
//需要将key进行hash转成int
int k=DJBHash(key);
client->db->insert(k,value);
}
以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网
猜你喜欢:本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
Beginning ARKit for iPhone and iPad
Wallace Wang / Apress / 2018-11-5 / USD 39.99
Explore how to use ARKit to create iOS apps and learn the basics of augmented reality while diving into ARKit specific topics. This book reveals how augmented reality allows you to view the screen on ......一起来看看 《Beginning ARKit for iPhone and iPad》 这本书的介绍吧!