304. Range Sum Query 2D - Immutable

栏目: Java · 发布时间: 6年前

内容简介:Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper left corner (row1, col1) and lower right corner (row2, col2).The above rectangle (with the red border) is defined by (row1, col1) = (2, 1) and (row2, col2) = (

Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper left corner (row1, col1) and lower right corner (row2, col2).

304. Range Sum Query 2D - Immutable

The above rectangle (with the red border) is defined by (row1, col1) = (2, 1) and (row2, col2) = (4, 3), which contains sum = 8.

Example:

Given matrix = [
  [3, 0, 1, 4, 2],
  [5, 6, 3, 2, 1],
  [1, 2, 0, 1, 5],
  [4, 1, 0, 1, 7],
  [1, 0, 3, 0, 5]
]

sumRegion(2, 1, 4, 3) -> 8
sumRegion(1, 1, 2, 2) -> 11
sumRegion(1, 2, 2, 4) -> 12

Note:

You may assume that the matrix does not change.

There are many calls to sumRegion function.

You may assume that row1 ≤ row2 and col1 ≤ col2.

难度:medium

题目:给定二维矩阵,找出方框内所包含元素的各,方框由左上角与右下角座标表示。

思路:求出(0,0)到(i,j)所有元素之和。(x1, y1, x2, y2) = (x2, y2) + (x1 - 1, y1 - 1) - (x1 - 1, y2) - (x2, y1 - 1)

Runtime: 60 ms, faster than 100.00% of Java online submissions for Range Sum Query 2D - Immutable.

Memory Usage: 48.7 MB, less than 16.67% of Java online submissions for Range Sum Query 2D - Immutable.

class NumMatrix {
    private int[][] matrix;
    public NumMatrix(int[][] matrix) {
        this.matrix = matrix;
        for (int i = 0; i < matrix.length; i++) {
            for (int j = 1; j < matrix[i].length; j++) {
                matrix[i][j] += matrix[i][j - 1];
            }
        }
        for (int i = 1; i < matrix.length; i++) {
            for (int j = 0; j < matrix[i].length; j++) {
                matrix[i][j] += matrix[i - 1][j];
            }
        }
    }
    
    public int sumRegion(int row1, int col1, int row2, int col2) {
        int rightUp = (row1 - 1 >= 0) ? matrix[row1 - 1][col2] : 0;
        int leftTop = (row1 - 1 >= 0 && col1 - 1 >= 0) ? matrix[row1 - 1][col1 - 1] : 0;
        int leftBottom = (col1 - 1 >= 0) ? matrix[row2][col1 - 1] : 0;
        
        return matrix[row2][col2] + leftTop - rightUp - leftBottom;
    }
}

/**
 * Your NumMatrix object will be instantiated and called as such:
 * NumMatrix obj = new NumMatrix(matrix);
 * int param_1 = obj.sumRegion(row1,col1,row2,col2);
 */

以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

Geometric Folding Algorithms

Geometric Folding Algorithms

Erik D Demaine / Cambridge University Press / 2008-8-21 / GBP 35.99

Did you know that any straight-line drawing on paper can be folded so that the complete drawing can be cut out with one straight scissors cut? That there is a planar linkage that can trace out any alg......一起来看看 《Geometric Folding Algorithms》 这本书的介绍吧!

HTML 压缩/解压工具
HTML 压缩/解压工具

在线压缩/解压 HTML 代码

HEX HSV 转换工具
HEX HSV 转换工具

HEX HSV 互换工具

HSV CMYK 转换工具
HSV CMYK 转换工具

HSV CMYK互换工具