算法 - 查找第K大数字

栏目: 编程工具 · 发布时间: 6年前

内容简介:本题目借助快排思想,算法描述:代码:算法复杂度分析:

本题目借助快排思想,算法描述:

  • a为待 排序 数组,n为数组长度
  1. 问题转换:把第k大数字转换成第l小数字,比如: n=5,k=1 ,那么 l=n-k+1=5 ,也就是第5小的数字,其下标 l_i=5-1=4
  2. a[n-1] 作为 pivot
  3. 用快排的思路,把 < pivot 的元素放到 pivot 左边,把 >= pivot 的元素放到 pivot 右边,得到pivot的下标: pivot_i
  4. 如果 pivot_i < l_i ,则说明被查找的数字可能在右边,对右边重复2-5步骤
  5. 如果 pivot_i > l_i ,则说明被查找的数字可能在左边,对左边重复2-5步骤

代码:

public static int findKthBigNumber(int[] a, int kthBig) {
  int n = a.length;
  int lthSmall = n - kthBig;
  return quickFind(a, 0, a.length - 1, lthSmall);
}

private static int quickFind(int[] a, int start, int end, int lthSmall) {
  if (start > end) {
    return -1;
  }
  int pivot = a[end];

  int pivot_i = start;
  for (int j = start; j <= end - 1; j++) {
    if (a[j] < pivot) {
      int tmp = a[j];
      a[j] = a[pivot_i];
      a[pivot_i] = tmp;
      pivot_i++;
    }
  }

  a[end] = a[pivot_i];
  a[pivot_i] = pivot;

  if (pivot_i == lthSmall) {
    return a[pivot_i];
  }

  if (pivot_i < lthSmall) {
    return quickFind(a, pivot_i + 1, end, lthSmall);
  }

  return quickFind(a, start, pivot_i - 1, lthSmall);
}

算法复杂度分析:

最好情况:

k > n

最坏情况:

(n-1)+(n-2)+(n-3)+...+1=n(n-1)/2

平均情况:

  • 不知怎么分析

以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

数字图像处理

数字图像处理

[美]冈萨雷斯、[美]伍兹 / 电子工业出版社 / 2010-1 / 79.80元

《数字图像处理(第3版)(英文版)》是数字图像处理经典著作,作者在对32个国家的134个院校和研究所的教师、学生及自学者进行广泛调查的基础上编写了第三版。除保留了第二版的大部分主要内容外,还根据收集的建议从13个方面进行了修订,新增400多幅图像、200多个图表和80多道习题,同时融入了近年来本科学领域的重要发展,使《数字图像处理(第3版)(英文版)》具有相当的特色与先进性。全书分为12章,包括绪......一起来看看 《数字图像处理》 这本书的介绍吧!

随机密码生成器
随机密码生成器

多种字符组合密码

HTML 编码/解码
HTML 编码/解码

HTML 编码/解码

URL 编码/解码
URL 编码/解码

URL 编码/解码