内容简介:本地机器上需要有 Java 8 和 maven 环境,推荐在linux或者mac上开发Flink应用:如果有 Java 8 环境,运行下面的命令会输出如下版本信息:如果有 maven 环境,运行下面的命令会输出如下版本信息:
本地机器上需要有 Java 8 和 maven 环境,推荐在 linux 或者mac上开发Flink应用:
如果有 Java 8 环境,运行下面的命令会输出如下版本信息:
如果有 maven 环境,运行下面的命令会输出如下版本信息:
开发 工具 推荐使用 ItelliJ IDEA。
插播广告
-
全网唯一一个从0开始帮助Java开发者转做大数据领域的公众号~
-
公众号 大数据技术与架构 或者搜索 import_bigdata 关注,大数据学习路线最新更新,已经有很多小伙伴加入了~
第一种方式
来这里flink.apache.org/
看这里:
注意:
An Apache Hadoop installation is not required to use Apache Flink. For users that use Flink without any Hadoop components, we recommend the release without bundled Hadoop libraries. 复制代码
这是啥意思? 这个意思就是说Flink可以不依赖Hadoop环境,如果说单机玩的话,下载一个 only
版本就行了。
第二种方式(不推荐)
git clone https://github.com/apache/flink.git cd flink mvn clean package -DskipTests 复制代码
然后进入编译好的Flink中去执行 bin/start-cluster.sh
其他乱七八糟的安装办法
比如 Mac用户可以用 brew install apache-flink
,前提是安装过 brew
这个mac下的工具.
启动Flink
我们先到Flink的目录下来: 如下:
$ flink-1.7.1 pwd /Users/wangzhiwu/Downloads/flink-1.7.1 复制代码
执行命令:
接着就可以进入 web 页面( http://localhost:8081/ ) 查看
恭喜你,一个单机版的flink就跑起来了。
构建一个应用
当然了,我们可以用maven,一顿new,new出来一个过程,这里我们将使用 Flink Maven Archetype 来创建我们的项目结构和一些初始的默认依赖。在你的工作目录下,运行如下命令来创建项目:
mvn archetype:generate \ -DarchetypeGroupId=org.apache.flink \ -DarchetypeArtifactId=flink-quickstart-java \ -DarchetypeVersion=1.7.2 \ -DgroupId=flink-project \ -DartifactId=flink-project \ -Dversion=0.1 \ -Dpackage=myflink \ -DinteractiveMode=false 复制代码
这样一个工程就构建好了。
还有一个更加牛逼的办法,看这里:
curl https://flink.apache.org/q/quickstart.sh | bash 复制代码
直接在命令行执行上面的命令,结果如下图:
同样可以构建一个Flink工程,而且自带一些demo。
原理是什么?点一下它看看就明白了。 flink.apache.org/q/quickstar…
编写一个入门级的WordCount
// // Program // public static void main(String[] args) throws Exception { // set up the execution environment final ExecutionEnvironment env = ExecutionEnvironment.getExecutionEnvironment(); // get input data DataSet<String> text = env.fromElements( "To be, or not to be,--that is the question:--", "Whether 'tis nobler in the mind to suffer", "The slings and arrows of outrageous fortune", "Or to take arms against a sea of troubles," ); DataSet<Tuple2<String, Integer>> counts = // split up the lines in pairs (2-tuples) containing: (word,1) text.flatMap(new LineSplitter()) // group by the tuple field "0" and sum up tuple field "1" .groupBy(0) //(i,1) (am,1) (chinese,1) .sum(1); // execute and print result counts.print(); } // // User Functions // /** * Implements the string tokenizer that splits sentences into words as a user-defined * FlatMapFunction. The function takes a line (String) and splits it into * multiple pairs in the form of "(word,1)" (Tuple2<String, Integer>). */ public static final class LineSplitter implements FlatMapFunction<String, Tuple2<String, Integer>> { @Override public void flatMap(String value, Collector<Tuple2<String, Integer>> out) { // normalize and split the line String[] tokens = value.toLowerCase().split("\\W+"); // emit the pairs for (String token : tokens) { if (token.length() > 0) { out.collect(new Tuple2<String, Integer>(token, 1)); } } } } } 复制代码
类似的例子,官方也有提供的,可以在这里下载: WordCount官方推荐
运行
本地右键运行:
提交到本地单机Flink上
- 进入工程目录,使用以下命令打包
mvn clean package -Dmaven.test.skip=true 复制代码
然后,进入 flink 安装目录 bin 下执行以下命令提交程序:
flink run -c org.myorg.laowang.WordCount /Users/wangzhiwu/WorkSpace/quickstart/target/quickstart-0.1.jar 复制代码
分别制定main方法和jar包的地址。
在刚才的控制台中,可以看到:
我们刚才提交过的程序。
flink的log目录下有我们提交过的任务的日志:
以上所述就是小编给大家介绍的《Flink从入门到放弃(入门篇2)-本地环境搭建&构建第一个Flink应用》,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对 码农网 的支持!
猜你喜欢:- kafka入门+集群搭建
- vue入门(一):项目搭建
- django入门一(搭建开发环境)
- MongoDB分片群集搭建入门详解
- webpack入门(2) - 安装,配置,环境搭建
- Seata 搭建与分布式事务入门
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
构建高性能Web站点
郭欣 / 电子工业出版社 / 2012-6 / 75.00元
《构建高性能Web站点(修订版)》是畅销修订版,围绕如何构建高性能Web站点,从多个方面、多个角度进行了全面的阐述,几乎涵盖了Web站点性能优化的所有内容,包括数据的网络传输、服务器并发处理能力、动态网页缓存、动态网页静态化、应用层数据缓存、分布式缓存、Web服务器缓存、反向代理缓存、脚本解释速度、页面组件分离、浏览器本地缓存、浏览器并发请求、文件的分发、数据库I/O优化、数据库访问、数据库分布式......一起来看看 《构建高性能Web站点》 这本书的介绍吧!