Hadoop学习(一)——HDFS分布式文件系统

栏目: 服务器 · 发布时间: 5年前

内容简介:HDFS是Hadoop Distribute File System 的简称,也就是Hadoop的一个分布式文件系统。分布式文件系统(DistributedFileSystem)是指文件系统管理的物理存储资源不一定直接连接在本地节点上,而是通过计算机网络与节点相连。分布式文件系统的设计基于客户机/服务器模式。一个典型的网络可能包括多个供多用户访问的服务器。在HDFS系统中,为了便于文件的管理和备份,引入分块概念(block)。这里的块是HDFS存储系统当中的最小单位,HDFS默认定义一个块的大小在Hadoo

HDFS是Hadoop Distribute File System 的简称,也就是Hadoop的一个分布式文件系统。

分布式文件系统(DistributedFileSystem)是指文件系统管理的物理存储资源不一定直接连接在本地节点上,而是通过计算机网络与节点相连。分布式文件系统的设计基于客户机/服务器模式。一个典型的网络可能包括多个供多用户访问的服务器。

HDFS重要概念

Hadoop学习(一)——HDFS分布式文件系统

Block数据块

在HDFS系统中,为了便于文件的管理和备份,引入分块概念(block)。这里的块是HDFS存储系统当中的最小单位,HDFS默认定义一个块的大小在Hadoop1.0中为64MB,Hadoop2.0中为128MB。当有文件上传到HDFS上时,若文件大小大于设置的块大小,则该文件会被切分存储为多个块,多个块可以存放在不同的DataNode上。但值得注意的是如果某文件大小没有到达64/128MB,该文件并不会占据整个块空间 。(例如当一个1MB的文件存储在128MB的块中,文件只使用1MB的硬盘空间,而不是128MB)。默认副本数为3。

namenode

namenode是管理文件系统的命名空间。它维护者文件系统树及整颗树内所有的文件和目录。这些信息以两个文件形式永久保存在本地磁盘上:fsimage命名空间镜像文件和edits编辑日志文件。namenode也记录着每个文件中各个块所在的数据节点信息,但它并不永久保存块的位置信息,因为这些信息会在系统启动时根据数据节点信息重建。

datanode

datanode是文件系统的工作节点。它们根据需要存储并检索数据块,并定期向namenode发送它们所存储的块的列表。

secondnamenode

secondnamenode又称为辅助namenode。secondnamenode不能被用作namenode,它的重要作用是定期合并namenode编辑日志与命名空间镜像,以防编辑日志过大。但是,secondnamenode保存的状态总是滞后于主节点namenode。

Client

客户端,系统使用者,调用HDFS API操作文件;与NN交互获取文件元数据;与DN交互进行数据读写。

hdfs细节

datatnode副本存储逻辑

hadoop的默认布局策略是在运行客户端的节点上放第1个复本(如果客户端运行在集群之外,就随机的选择一个节点,但是系统会避免挑选那些存储太满或太忙的节点)。第2个复本放在与第1个不同且是随机选择的另外的机架中的节点上。第3个复本与第2个复本放在同一个机架上面,且是随机选择的一个节点,其他的复本放在集群中随机选择的节点上面,但是系统会尽量避免在相同的机架上面放太多的复本。

Hadoop学习(一)——HDFS分布式文件系统

secondnamenode合并namenode日志过程

hadoop SecondNamenode详解

  1. 初始化检查点
  2. secondnamenode通知Namenode启用新的edits文件
  3. 从Namenode下载fsimage和edits文件
  4. 调用loadFSImage装载fsimage
  5. 调用loadFSEdits应用edits日志
  6. 保存合并后的目录树信息到新的image文件中
  7. 将新产生的image上传到Namenode中,替换原来的image文件
  8. 结束检查点
Hadoop学习(一)——HDFS分布式文件系统

hdfs写入写出过程

www.cnblogs.com/zhangyinhua…

在学习过程中,发现这篇文章写得很全面, 这个部分非常重要,希望大家好好阅读这篇文章。

hdfs的容错机制

www.cnblogs.com/zhangyinhua…

hadoop HA高可用

对于分布式文件系统HDFS ,NN是系统的核心节点,存储了各类元数据信息,并负责管理文件系统的命名空间和客户端对文件的访问。但是,在HDFS1.0中,只存在一个NN,一旦发生“单点故障”,就会导致整个系统失效。

HDFS2.0采用了HA(High Availability)架构。在HA集群中,一般设置两个NN,其中一个处于“活跃(Active)”状态,另一个处于“待命(Standby)”状态。处于Active状态的NN负责对外处理所有客户端的请求,处于Standby状态的NN作为热备份节点,保存了足够多的元数据,在Active节点发生故障时,立即切换到活跃状态对外提供服务。

Hadoop学习(一)——HDFS分布式文件系统

由于Standby NN是Active NN的“热备份”,因此Active NN的状态信息必须实时同步到StandbyNN。针对状态同步,可以借助一个共享存储系统来实现,如NFS(NetworkFile System)、QJM(Quorum Journal Manager)或者Zookeeper。Active NN将更新数据写入到共享存储系统,Standby NN会一直监听该系统,一旦发现有新的写入,就立即从公共存储系统中读取这些数据并加载到自己内存中,从而保证与Active NN状态一致。

此外,NN保存了数据块到实际存储位置的映射信息,即每个数据块是由哪个DN存储的。当一个DN加入到集群中时,它会把自己所包含的数据块列表给NN,定期通过心跳方式,以确保NN中的块映射是最新的。因此,为了实现故障时的快速切换,必须保证StandbyNN中也包含最新的块映射信息,为此需要给DN配置Active和Standby两个NN的地址,把块的位置和心跳信息同时发送到两个NN上。为了防止出现“两个管家”现象,还要保证在任何时刻都只有一个NN处于Active状态,需要Zookeeper实现。

www.cnblogs.com/qcloud1001/…


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

离散数学及其应用

离散数学及其应用

SusannaS.Epp / 高等教育出版社 / 2005-3-1 / 63.0

离散数学及其应用:英文本,ISBN:9787040162301,作者:( )Susanna S.Epp著一起来看看 《离散数学及其应用》 这本书的介绍吧!

JSON 在线解析
JSON 在线解析

在线 JSON 格式化工具

在线进制转换器
在线进制转换器

各进制数互转换器

随机密码生成器
随机密码生成器

多种字符组合密码