内容简介:都说今年的瓜特别多(葫芦娃的那种),但是过年期间最甜的我想非翟天临的“知网是什么?”莫属了吧。近期,翟天临因“论文抄袭、学术造假”被推上风口浪尖,甚至连自己参演并准备播出的六部电视剧,也被央视要求全部删减,至此人设彻底崩塌,舆论哗然。
都说今年的瓜特别多(葫芦娃的那种),但是过年期间最甜的我想非翟天临的“知网是什么?”莫属了吧。
近期,翟天临因“论文抄袭、学术造假”被推上风口浪尖,甚至连自己参演并准备播出的六部电视剧,也被央视要求全部删减,至此人设彻底崩塌,舆论哗然。
我平常不怎么关注娱乐圈,所以刚开始并没有把这件事放在心上,直到网上爆出翟的论文大篇幅抄袭陈坤论文的消息,我才对这位娱乐圈博士的文章起了兴趣。
目前北京电影学院已经撤销翟天临博士学位,取消陈浥博士研究生导师资格。
接下来就让我们以一个 Coder 的角度来硬核分析下翟的论文吧。
实验环境
工欲善其事,必先利其器,在开始分析之前,我先说明此次分析所处的实验环境,以免出现异常:
- MacOS 10.14.3
- Python 3.6.8(Anaconda)
- Visual Studio Code
- 使用的包有:
- pkuseg(分词)
- matplotlib(绘图)
- wordcloud(词云)
- numpy(数学计算)
- Sklearn(机器学习)
数据获取
说实话,起初我以为就算翟不知“知网”为何物,“知网”也该收录翟的文章吧,可我在知网搜了好久也没能找到翟的论文,好在我在今日头条上找到了他的文章,保存在 data/zhai.txt 中。
说到这,还真要感谢翟天临啊,都是因为他,大家才变得这么有学术精神,开始研究起本科硕士博士论文了。
数据清理
上一节我们已经将他的论文保存到一个 txt 中了,所以我们需要先将文章加载到内存中:
# 数据获取(从文件中读取) def readFile(file_path): content = [] with open(file_path, encoding="utf-8") as f: content = f.read() return content
我统计了下,除去开头的标题和末尾的致谢,总共 25005 个字。接下来我们来进行数据清理,在这里我用了 pkuseg 对内容进行分词处理,同时去掉停用词后输出分词的结果。
所谓停用词就是在语境中没有具体含义的文字,例如这个、那个,你我他,的得地,以及标点符合等等。
因为没人在搜索的时候去用这些没意义的停用词搜索,为了使得分词效果更好,我就要把这些停用词过滤掉。
# 数据清理(分词和去掉停用词) def cleanWord(content): # 分词 seg = pkuseg.pkuseg() text = seg.cut(content) # 读取停用词 stopwords = [] with open("stopwords/哈工大停用词表.txt", encoding="utf-8") as f: stopwords = f.read() new_text = [] # 去掉停用词 for w in text: if w not in stopwords: new_text.append(w) return new_text
执行结果如下:
这里我提两点,为什么分词 工具 用的是 pkuseg 而不是 jieba?pkuseg 是北大推出的一个分词工具。官方地址是:
https://github.com/lancopku/pkuseg-python
它的 README 中说它是目前中文分词工具中效果最好的。
为什么用哈工大的停用词表?停用词表的下载地址在:
https://github.com/YueYongDev/stopwords
以下是几个常用停用词表的对比:
参考文献:官琴, 邓三鸿, 王昊. 中文文本聚类常用停用词表对比研究[J]. 数据分析与知识发现, 2006, 1(3).
停用词表对比研究:
https://github.com/YueYongDev/stopwords
数据统计
说是数据统计,其实也没什么好统计的,这里简单化一下,就是统计下各个词出现的频率,然后输出词频最高的 15 个词:
# 数据整理(统计词频) def statisticalData(text): # 统计每个词的词频 counter = Counter(text) # 输出词频最高的15个单词 pprint.pprint(counter.most_common(15))
打印的结果如下:
真的是个不可多得的“好演员”啊,能将角色带入生活,即使肚中无货却仍用自己的表演能力为自己设立一个“学霸”人设,人物形象如此饱满,兴许这就是创作的艺术吧!
文章中说的最多的就是生活、角色、人物、性格这些词,这些正是一个好演员的精神所在,如果我们将这些词做成词云的话,可能效果会更好。
生成词云
词云生成这个部分我采用的是 wordcloud 库,使用起来非常简单,网上教程也有很多。
这里需要提一点的就是:为了防止中文乱码情况的发生,需要配置 font_path 这个参数。
中文字体可以选用系统的,也可以网上找,这里我推荐一个免费的中文字体下载的网址:
http://www.lvdoutang.com/zh/0/0/1/1.html
下面是生成词云的代码:
# 数据可视化(生成词云) def drawWordCloud(text, file_name): wl_space_split = " ".join(text) # 设置词云背景图 b_mask = plt.imread('assets/img/bg.jpg') # 设置词云字体(若不设置则无法显示中文) font_path = 'assets/font/FZZhuoYTJ.ttf' # 进行词云的基本设置(背景色,字体路径,背景图片,词间距) wc = WordCloud(background_color="white",font_path=font_path, mask=b_mask, margin=5) # 生成词云 wc.generate(wl_space_split) # 显示词云 plt.imshow(wc) plt.axis("off") plt.show() # 将词云图保存到本地 path = os.getcwd()+'/output/' wc.to_file(path+file_name)
真假李逵(文章对比)
分析完了“李鬼”,我们有必要请出他的真身“李逵”兄弟了,同样还是和之前一样的套路,先找到数据,然后分词统计词频,这里就不重复操作了,直接放出词云图。
看到这图是不是觉得和翟的词云图异常相似,那么,这“真假李逵”之间到底有多像呢?接下来我们来计算下两篇文章的相似度吧。
TF-IDF
文章相似度的比较有很多种方法,使用的模型也有很多类别,包括 TF-IDF、LDA、LSI 等,这里方便起见,就只使用 TF-IDF 来进行比较了。
TF-IDF 实际上就是在词频 TF 的基础上再加入 IDF 的信息,IDF 称为逆文档频率。
不了解的可以看下阮一峰老师的讲解,里面对 TFIDF 的讲解也是十分透彻的。
https://www.ruanyifeng.com/blog/2013/03/tf-idf.html
Sklearn
Scikit-Learn 也简称 Sklearn,是机器学习领域当中最知名的 Python 模块之一,官方地址为:
https://github.com/scikit-learn/scikit-learn
其包含了很多种机器学习的方式,下面我们借助于 Sklearn 中的模块 TfidfVectorizer 来计算两篇文章之间的相似度。
代码如下:
# 计算文本相似度 def calculateSimilarity(s1, s2): def add_space(s): return ' '.join(cleanWord(s)) # 将字中间加入空格 s1, s2 = add_space(s1), add_space(s2) # 转化为TF矩阵 cv = TfidfVectorizer(tokenizer=lambda s: s.split()) corpus = [s1, s2] vectors = cv.fit_transform(corpus).toarray() # 计算TF系数 return np.dot(vectors[0], vectors[1]) / (norm(vectors[0]) * norm(vectors[1]))
除了 Sklearn,我们还可以使用 gensim 调用一些模型进行计算,考虑到文章篇幅,就由读者自己去搜集资料实现吧。
我们将翟的论文和陈的论文分别传入该函数后,输出结果为:
两篇文章的相似度为: 0.7074857881770839
其实这个结果我还是挺意外的,只知道这“李鬼”长得像,却没想到相似度竟然高达 70.7%。
当然,作为弟弟,翟的这个事和吴秀波的事比起来,那都不是个事。
以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网
猜你喜欢:- 华人学者再获 SIGGRAPH 优秀博士论文奖:「每章都能作为博士论文」
- 2018 ACM博士论文奖公布:伯克利博士获奖,清华姚班马腾宇荣誉提名
- 阿尔伯塔大学博士毕业论文:基于图结构的自然语言处理
- 乘风破浪的博士:2019 ACM博士论文奖公布,清华姚班毕业生、MIT学霸吴佳俊获荣誉提名
- 论文绘图神器来了:一行代码绘制不同期刊格式图表,哈佛博士后开源
- 出身清华姚班,斯坦福博士毕业,她的毕业论文成了「爆款」
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。