[LeetCode]Longest Palindromic Subsequence

栏目: 编程工具 · 发布时间: 7年前

内容简介:[LeetCode]Longest Palindromic Subsequence

题目描述:

LeetCode 516. Longest Palindromic Subsequence

Given a string s, find the longest palindromic subsequence's length in s. You may assume that the maximum length of s is 1000.

Example 1:

Input:

"bbbab"

Output:

4

One possible longest palindromic subsequence is "bbbb".

Example 2:

Input:

"cbbd"

Output:

2

One possible longest palindromic subsequence is "bb".

题目大意:

求最长回文子序列的长度

解题思路:

解法I 动态规划(Dynamic Programming)

状态转移方程:

dp[i][j] = max(dp[i][j], dp[i + 1][j - 1] + 2) if s[i] == s[j]
dp[i][j] = max(dp[i][j - 1], dp[i + 1][j])  otherwise

上式中,dp[i][j]表示s[i .. j]的最大回文子串长度

Java代码:

public class Solution {
    public int longestPalindromeSubseq(String s) {
        int size = s.length();
        int[][] dp = new int[size][size];
        for (int i = size - 1; i >= 0; i--) {
            dp[i][i] = 1;
            for (int j = i + 1; j < size; j++) {
                if (s.charAt(i) == s.charAt(j)) {
                    dp[i][j] = dp[i + 1][j - 1] + 2;
                } else {
                    dp[i][j] = Math.max(dp[i + 1][j], dp[i][j - 1]);
                }
            }
        }
        return dp[0][size - 1];
    }
}

解法II 动态规划(Dynamic Programming)

问题转化为求s与reversed(s)的最长公共子序列

令s' = reversed(s), size = len(s)

dp[i][j]表示s[0 .. i]与s'[0 .. j]的最长公共子序列的长度

枚举回文串的中点m,求dp[m][size - m] * 2 以及 dp[m - 1][size - m] * 2 + 1的最大值

Java代码:

public class Solution {
    public int longestPalindromeSubseq(String s) {
        int size = s.length();
        int[][] dp = new int[size + 1][size + 1];
        for (int i = 1; i <= size; i++) {
            for (int j = 1; j <= size; j++) {
                if (s.charAt(i - 1) == s.charAt(size - j)) {
                    dp[i][j] = Math.max(dp[i][j], dp[i - 1][j - 1] + 1);
                } else {
                    dp[i][j] = Math.max(dp[i][j - 1], dp[i - 1][j]);
                }
            }
        }
        int ans = s.length() > 0 ? 1 : 0;
        for (int m = 0; m < size; m++) {
            ans = Math.max(dp[m][size - m] * 2, ans);
            if (m > 0) ans = Math.max(dp[m - 1][size - m] * 2 + 1, ans);
        }
        return ans;
    }
}

以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

JavaScript DOM编程艺术

JavaScript DOM编程艺术

Jeremy Keith / 杨涛、王建桥、杨晓云 / 人民邮电出版社 / 2006年12月 / 39.00元

本书讲述了JavaScript和DOM的基础知识,但重点放在DOM编程技术背后的思路和原则:预留退路、循序渐进和以用户为中心等,这些概念对于任何前端Web开发工作都非常重要。本书将这些概念贯穿在书中的所有代码示例中,使你看到用来创建图片库页面的脚本、用来创建动画效果的脚本和用来丰富页面元素呈现效果的脚本,最后结合所讲述的内容创建了一个实际的网站。 本书适合Web设计师和开发人员阅读。一起来看看 《JavaScript DOM编程艺术》 这本书的介绍吧!

JS 压缩/解压工具
JS 压缩/解压工具

在线压缩/解压 JS 代码

Base64 编码/解码
Base64 编码/解码

Base64 编码/解码

HEX HSV 转换工具
HEX HSV 转换工具

HEX HSV 互换工具