内容简介:【动态规划】最长公共子序列与最长公共子串
1. 问题描述
子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串
- cnblogs
- belong
比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与母串保持一致,我们将其称为公共子序列。最长公共子序列(Longest Common Subsequence, LCS),顾名思义,是指在所有的子序列中最长的那一个。子串是要求更严格的一种子序列,要求在母串中连续地出现。在上述例子的中,最长公共子序列为blog(cn blog s, b e lo n g ),最长公共子串为lo(cnb lo gs, be lo ng)。
2. 求解算法
对于母串X=<x1,x2,⋯,xm>, Y=<y1,y2,⋯,yn>,求LCS与最长公共子串。
暴力解法
假设 m<n, 对于母串X,我们可以暴力找出2m个子序列,然后依次在母串Y中匹配,算法的时间复杂度会达到指数级O(n∗2m)。显然,暴力求解不太适用于此类问题。
动态规划
假设Z=<z1,z2,⋯,zk>是X与Y的LCS, 我们观察到
- 如果xm=yn,则zk=xm=yn,有Zk−1是Xm−1与Yn−1的LCS;
- 如果xm≠yn,则Zk是Xm与Yn−11的LCS,或者是Xm−1与Yn的LCS。
因此,求解LCS的问题则变成递归求解的两个子问题。但是,上述的递归求解的办法中,重复的子问题多,效率低下。改进的办法—— 用空间换时间 ,用数组保存中间状态,方便后面的计算。这就是动态规划(DP)的核心思想了。
DP求解LCS
用二维数组c[i][j]记录串x1x2⋯xi与y1y2⋯yj的LCS长度,则可得到状态转移方程
代码实现
public static int lcs(String str1, String str2) {
int len1 = str1.length();
int len2 = str2.length();
int c[][] = new int[len1+1][len2+1];
for (int i = 0; i <= len1; i++) {
for( int j = 0; j <= len2; j++) {
if(i == 0 || j == 0) {
c[i][j] = 0;
} else if (str1.charAt(i-1) == str2.charAt(j-1)) {
c[i][j] = c[i-1][j-1] + 1;
} else {
c[i][j] = max(c[i - 1][j], c[i][j - 1]);
}
}
}
return c[len1][len2];
}
DP求解最长公共子串
前面提到了子串是一种特殊的子序列,因此同样可以用DP来解决。定义数组的存储含义对于后面推导转移方程显得尤为重要,糟糕的数组定义会导致异常繁杂的转移方程。考虑到子串的连续性,将二维数组c[i,j]c[i,j]用来记录具有这样特点的子串——结尾为母串x1x2⋯xi与y1y2⋯yj的结尾——的长度。
得到转移方程:
最长公共子串的长度为 max(c[i,j]), i∈{1,⋯,m},j∈{1,⋯,n}。
代码实现
public static int lcs(String str1, String str2) {
int len1 = str1.length();
int len2 = str2.length();
int result = 0; //记录最长公共子串长度
int c[][] = new int[len1+1][len2+1];
for (int i = 0; i <= len1; i++) {
for( int j = 0; j <= len2; j++) {
if(i == 0 || j == 0) {
c[i][j] = 0;
} else if (str1.charAt(i-1) == str2.charAt(j-1)) {
c[i][j] = c[i-1][j-1] + 1;
result = max(c[i][j], result);
} else {
c[i][j] = 0;
}
}
}
return result;
}
3. 参考资料
[1] cs2035, Longest Common Subsequence .
[2] 一线码农, 经典算法题每日演练——第四题 最长公共子序列 .
[3] GeeksforGeeks, Dynamic Programming | Set 29 (Longest Common Substring) .
本文由Treant 创作,采用 知识共享署名-相同方式共享 3.0 中国大陆许可协议 进行许可。
转载、引用前需联系作者,并署名作者且注明文章出处。
本站文章版权归原作者及原出处所有 。内容为作者个人观点, 并不代表本站赞同其观点和对其真实性负责。本站是一个个人学习交流的平台,并不用于任何商业目的,如果有任何问题,请及时联系我们,我们将根据著作权人的要求,立即更正或者删除有关内容。本站拥有对此声明的最终解释权。
以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网
猜你喜欢:- 动态规划:二项式序列
- 动态规划求解最长公共子序列
- 【算法深入理解】[动态规划]最长公共子序列
- 详解动态规划最长公共子序列--JavaScript实现
- 怎么推导出《115. 不同的子序列》的动态规划解法
- Java学习路线规划
本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
赢在设计
[美] 洛芙迪 (Lance Loveday)、[美] 尼豪斯 (Sandra Niehaus) / 刘淼、枊靖、王卓昊 / 人民邮电出版社 / 2010-8 / 55.00
企业总是面临在网站设计和改进方面进行投资的抉择。怎样才能让有限的资金发挥出最大的效益呢?网站设计不应只是把网站做得赏心悦目,它更应该是提高经济收益和获得竞争优势的战略利器。是时候让网站发挥其潜能,以业务指标为导向来做设计决策,为提升网站收益而设计了。 作者凭借多年为众多网站做咨询工作的经验,为我们揭示了赢在设计的奥秘。它针对目前网站设计中存在的典型问题,先从宏观上探讨解决问题的战略手段,围绕......一起来看看 《赢在设计》 这本书的介绍吧!
HEX CMYK 转换工具
HEX CMYK 互转工具
HSV CMYK 转换工具
HSV CMYK互换工具