内容简介:此章节会通过两个
此章节会通过两个 demo
来展示 Stack Reconciler
以及 Fiber Reconciler
的数据结构。
首先用代码表示上图节点间的关系。比如 a1 节点
下有 b1、b2、b3 节点
, 就可以把它们间的关系写成 a1.render = () => [b1, b2, b3]
;
var a1 = { name: 'a1', render = () => [b1, b2, b3] } var b1 = { name: 'b1', render = () => [c1] } var b2 = { name: 'b2', render = () => [c2] } var b3 = { name: 'b3', render = () => [] } var c1 = { name: 'c1', render = () => [d1] } var c2 = { name: 'c2', render = () => [] } var d1 = { name: 'd1', render = () => [d2] } var d2 = { name: 'd2', render = () => [] }
Stack Reconciler
在 React 16
之前,节点之间的关系可以用数据结构中 树的深度遍历
来表示。
如下实现 walk
函数, 将深度遍历的节点打印出来。
walk(a1) function walk(instance) { if (!instance) return console.log(instance.name) instance.render().map(walk) }
输出结果为: a1 b1 c1 d1 d2 b2 c2 b3
Fiber Reconciler
在 React 16
中,节点之间的关系可以用数据结构中的 链表
来表示。
节点之间的链表有三种情形, 用图表示如下:
- 父节点到子节点(红色虚线)
- 同层节点(黄色虚线)
- 子节点到父节点(蓝色虚线)
父节点指向第一个子节点, 每个子节点都指向父节点,同层节点间是单向链表。
首先, 构建节点的数据结构, 如下所示:
var FiberNode = function(instance) { this.instance = instance this.parent = null this.sibling = null this.child = null }
然后创建一个将节点串联起来的 connect
函数:
var connect = function(parent, childList) { parent.child = childList.reduceRight((prev, current) => { const fiberNode = new FiberNode(current) fiberNode.parent = parent fiberNode.sibling = prev return fiberNode }, null) return parent.child }
在 JavaScript 中实现链表的数据结构可以巧用 reduceRight
connect
函数中实现了上述链表关系。可以像这样使用它:
var parent = new FiberNode(a1) var childFirst = connect(parent, a1.render())
这样子便完成了 a1 节点
指向 b1 节点
的链表、 b1、b2、b3 节点间
的单向链表以及 b1、b2、b3 节点
指向 a1 节点
的链表。
最后剩下 goWalk
函数将全部节点给遍历完。
// 打印日志以及添加列表 var walk = function(node) { console.log(node.instance.name) const childLists = node.instance.render() let child = null if (childLists.length > 0) { child = connect(node, childLists) } return child } var goWalk = function(root) { let currentNode = root while (true) { const child = walk(currentNode) // 如果有子节点 if (child) { currentNode = child continue } // 如果没有相邻节点, 则返回到父节点 while (!currentNode.sibling) { currentNode = currentNode.parent if (currentNode === root) { return } } // 相邻节点 currentNode = currentNode.sibling } } // 调用 goWalk(new FiberNode(a1))
打印结果为 a1 b1 c1 d1 d2 b2 c2 b3
Fiber Reconciler 的优势
通过分析上述两种数据结构实现的代码,可以得出下面结论:
- 基于树的深度遍历实现的 Reconciler: 一旦进入调用栈便无法暂停;
- 基于链表实现的 Reconciler: 在
while(true) {}
的循环中, 可以通过currentNode
的赋值重新得到需要操作的节点,而在赋值之前便可以'暂停'来执行其它逻辑, 这也是requestIdleCallback
能得以在Fiber Reconciler
的原因。
以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网
猜你喜欢:本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。