go-kit微服务:API监控

栏目: 数据库 · 发布时间: 5年前

内容简介:目前,几乎所有的研发人员每天都在跟API打交道:后端为实现业务不停的生产API,前端为实现产品功能不停的调用API。API已经成为前端与后端、产品与产品、公司与公司之间技术沟通、业务合作的桥梁。微服务中,API几乎是服务与外界的唯一交互渠道,API服务的稳定性、可靠性越来越成为不可忽略的部分。我们需要实时了解API的运行状况(请求次数、延时、失败等),需要通过对历史数据的分析了解哪些API存在瓶颈以便后期优化。所以,为了确保系统良好的提供服务,绝大多数的微服务框架也都集成了API监控组件。本文将为算术运算服

目前,几乎所有的研发人员每天都在跟API打交道:后端为实现业务不停的生产API,前端为实现产品功能不停的调用API。API已经成为前端与后端、产品与产品、公司与公司之间技术沟通、业务合作的桥梁。

微服务中,API几乎是服务与外界的唯一交互渠道,API服务的稳定性、可靠性越来越成为不可忽略的部分。我们需要实时了解API的运行状况(请求次数、延时、失败等),需要通过对历史数据的分析了解哪些API存在瓶颈以便后期优化。所以,为了确保系统良好的提供服务,绝大多数的微服务框架也都集成了API监控组件。

本文将为算术运算服务增加API监控功能: Prometheus 作为监控组件, Grafana 作为可视化工具,两者均通过 docker-compose 部署运行。go-kit已经提供 prometheus 组件( metric/prometheus ),因此集成工作变得非常容易。在开始之前我们需要先了解一下所需的知识点。

Prometheus

Prometheus (中文名称:普罗米修斯)是一套开源的系统监控报警框架。作为新一代的监控框架,Prometheus 具有以下特点:

  • 提供强大的多维度数据模型,如Counter、Gauge、Histogram、Summary;
  • 强大而灵活的查询语句(PromQL),可方便的实现对时间序列数据的查询、聚合操作;
  • 易于管理与高效;
  • 提供pull模式、push gateway方式实现时间序列数据的采集;
  • 支持多种可视化图形界面:Grafana、Web UI、API clients;
  • 报警规则管理、报警检测和报警推送功能。

Grafana

Grafana是一个跨平台的开源的度量分析和可视化工具,可以通过将采集的数据查询然后可视化的展示,并及时通知。它主要有以下六大特点:

  • 展示方式:快速灵活的客户端图表,面板插件有许多不同方式的可视化指标和日志,官方库中具有丰富的仪表盘插件,比如热图、折线图、图表等多种展示方式;
  • 数据源:Graphite,InfluxDB,OpenTSDB,Prometheus,Elasticsearch,CloudWatch和KairosDB等;
  • 通知提醒:以可视方式定义最重要指标的警报规则,Grafana将不断计算并发送通知,在数据达到阈值时通过Slack、PagerDuty等获得通知;
  • 混合展示:在同一图表中混合使用不同的数据源,可以基于每个查询指定数据源,甚至自定义数据源;
  • 注释:使用来自不同数据源的丰富事件注释图表,将鼠标悬停在事件上会显示完整的事件元数据和标记;
  • 过滤器:Ad-hoc过滤器允许动态创建新的键/值过滤器,这些过滤器会自动应用于使用该数据源的所有查询。

在该示例中,通过配置文件为Prometheus添加作业(job),尤其定时向本示例服务发起HTTP请求监控指标数据(即pull模式)。

实战演练

Step-1:环境准备

由于我的电脑windows安装 docker 一直不成功,我把运行环境切换到ubuntu 18.04下,还是使用Goland开发。

如果已经配置过docker和docker-compose可跳过步骤1、2;

  1. 按照官方指南安装 docker-ce 。另外,为了提高镜像下载速度,可选择国内镜像修改方式如下:
# 打开(没有会新建)文件
 sudo vim /etc/docker/daemon.json
 
 # 设置以下内容
 {
    "registry-mirrors": [
        "https://registry.docker-cn.com"
    ]
}

# 重启服务
sudo service docker restart
复制代码
  1. 安装docker-compose。官方将安装包放在aws,使用其推荐的curl方式特别慢。我是先到Release页面下载最新版本,复制到 usr/local/bin/docker-compose ;然后设置权限安装成功的。步骤如下:
# 移动或复制文件到指定目录
sudo mv [your download file] /usr/local/bin/docker-compose

# 设置权限
sudo chmod +x /usr/local/bin/docker-compose

# 检查是否安装成功
docker-compose --version
复制代码
  1. 下载最新版本Prometheus客户端
go get github.com/prometheus/client_golang/prometheus
复制代码
  1. 复制目录 arithmetic_rate_limit_demo ,重新命名为 arithmetic_monitor_dmeo

Step-2:添加指标采集中间件

本示例将基于《go-kit微服务:限流》的代码进行改进,使用go-kit中间件机制为 Service 添加Prometheus监控指标采集功能。在 instrument.go 下增加新的结构类型:

// metricMiddleware 定义监控中间件,嵌入Service
// 新增监控指标项:requestCount和requestLatency
type metricMiddleware struct {
	Service
	requestCount   metrics.Counter
	requestLatency metrics.Histogram
}
复制代码

接下来创建为Service封装指标采集的方法 Metric ,采集请求次数和请求延迟两个指标项:

// Metrics 指标采集方法
func Metrics(requestCount metrics.Counter, requestLatency metrics.Histogram) ServiceMiddleware {
	return func(next Service) Service {
		return metricMiddleware{
			next,
			requestCount,
			requestLatency}
	}
}
复制代码

然后跟限流、日志中间件的方式一致,由于嵌入了Service接口,需要依次实现该接口的方法,以Add为例进行说明,其他方法与之类似。

  • 每接收一次请求,请求次数每次加1;
  • 通过请求结束时间减去请求开始的差值(单位秒)作为请求延时;
func (mw metricMiddleware) Add(a, b int) (ret int) {

	defer func(beign time.Time) {
		lvs := []string{"method", "Add"}
		mw.requestCount.With(lvs...).Add(1)
		mw.requestLatency.With(lvs...).Observe(time.Since(beign).Seconds())
	}(time.Now())

	ret = mw.Service.Add(a, b)
	return ret
}
复制代码

Step-3:开放Prometheus指标采集接口

transport.go 中新增用于Prometheus轮循拉取监控指标的代码,开放API接口 /metrics

r.Path("/metrics").Handler(promhttp.Handler())
复制代码

Step-4:修改main.go

首先创建指标采集对象:请求次数采集和请求延时采集对象。

fieldKeys := []string{"method"}
requestCount := kitprometheus.NewCounterFrom(stdprometheus.CounterOpts{
	Namespace: "raysonxin",
	Subsystem: "arithmetic_service",
	Name:      "request_count",
	Help:      "Number of requests received.",
}, fieldKeys)

requestLatency := kitprometheus.NewSummaryFrom(stdprometheus.SummaryOpts{
	Namespace: "raysonxin",
	Subsystem: "arithemetic_service",
	Name:      "request_latency",
	Help:      "Total duration of requests in microseconds.",
}, fieldKeys)
复制代码

使用 Metrics 方法对Service对象进行封装:

svc = Metrics(requestCount, requestLatency)(svc)
复制代码

由于最后需要使用Postman进行接口测试,这里我将限流器的容量改为了100。

//add ratelimit,refill every second,set capacity 3
ratebucket := rate.NewLimiter(rate.Every(time.Second*1), 100)
endpoint = NewTokenBucketLimitterWithBuildIn(ratebucket)(endpoint)
复制代码

至此,代码修改完成,可通过 go build 进行编译,确保没有问题。

Step-5:配置docker镜像

本示例使用Prometheus和Gafana的官方docker镜像(prom/prometheus和grafana/grafana),通过docker-compose搭建环境。

首先为Prometheus创建配置文件(docker/prometheus.yml),创建每隔5秒定时从我们的微服务抓取监控指标数据的Job,命名为raysonxin。该配置文件需要在运行时加载到镜像中。 注意targets设置为算术运算服务的访问地址;yml文件配置信息的缩进。

global:
    scrape_interval: 15s
    external_labels:
      monitor: 'raysonxin-monitor'

scrape_configs:
  - job_name: 'prometheus'
    scrape_interval: 5s
    static_configs:
      - targets: ['localhost:9090']
        labels:
          group: 'local'

  - job_name: 'raysonxin'
    scrape_interval: 5s
    static_configs:
      - targets: ['192.168.10.113:9000']
        labels:
          group: 'arithmetic'
复制代码

对于Gafana镜像有两项配置需要在yml文件中设置:

GF_SECURITY_ADMIN_PASSWORD

接下来创建docker-compose运行所需的配置文件:docker/docker-compose.yml,内容如下:

version: '2'

services:
  prometheus:
    image: prom/prometheus
    ports:
      - 9090:9090
    volumes:
      - ./prometheus.yml:/etc/prometheus/prometheus.yml
  grafana:
    image: grafana/grafana
    ports:
      - 3000:3000
    environment:
      - GF_SECURITY_ADMIN_PASSWORD=password
    volumes:
      - $PWD/extra/grafana_db:/var/lib/grafana grafana/grafana
复制代码

现在就可以使用命令启动docker了。

Step-6:运行

万事俱备只欠东风了。接下来就是依次启动我们的服务、Prometheus和Grafana镜像,然后使用Postman进行测试。

  • 启动算术运算服务。
./arithmetic_monitor_demo 
Http Server start at port:9000
复制代码
  • 启动docker。
# 启动docker
docker-compose -f docker/docker-compose.yml up -d

# 查看运行状态
sudo docker-compose -f docker/docker-compose.yml ps

# 停止docker
sudo docker-compose -f docker/docker-compose.yml stop
复制代码

通过“查看运行状态”指令看到以下界面,说明Prometheus和Grafana已经开始运行了。

go-kit微服务:API监控
  • 使用Postman调用算术运算服务。这里使用Postman的 Runner 功能(界面左上角),首先将算术运算服务的四个请求添加到一个 Collection 中;然后创建一个 Environment (界面右上角)命名为 env-gokit-article ;然后依次进入 Runner -选择 Collection ,按照下图进行设置后,点击按钮 Run demo1 开始执行测试。
go-kit微服务:API监控
go-kit微服务:API监控

Step-7:查看监控数据

初次通过浏览器访问 Grafana 需要进行若干配置,才可查看监控数据,比较简单,步骤如下:

  • 登录Grafana:通过浏览器访问 localhost:3000 ,使用用户名 admin 和yml配置的密码 password 登录;
  • 创建数据源:点击 create your first datasource ,选择 Prometheus ,配置 HTTP.URL (建议设置为 http://[IP]:[port] ,不要使用localhost),最后保存成功。
  • 创建Dashboard:点击 create your first dashboard ,选择 Graph ,点击 Title 下拉菜单中的 Edit ,即可进入如下界面(选择Metric选项):
go-kit微服务:API监控

如图所示,在查询输入框输入 raysonxin 即可看到我们采集的四个监控指标项,选择其中一项即可在图表中查看细节(请自行查阅资料进行分析,本文不展开,因为还不懂)。

  • raysonxin_arithmetic_service_request_count;
  • raysonxin_arithmetic_service_request_latency;
  • raysonxin_arithmetic_service_request_latency_count;
  • raysonxin_arithmetic_service_request_latency_sum;

总结

今天的示例为运算服务增加基于Prometheus的API监控功能,通过Prometheus(官方docker镜像)采集运算服务的监控指标数据,通过Grafana(官方docker镜像)的Dashboard查看监控指标数据。

由于go-kit本身已经对Prometheus监控组件进行了封装,所以代码编写工作比较省时间,更多的时间在于环境的搭建与测试,当然由于使用docker技术效率已经大大提高。

本文只是流水账似的把我的学习过程记录下来,并没有对其中使用的技术和原理进行深入分析。

本文示例代码可通过我的 github 获取,如果有任何疑问欢迎留言讨论。


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

浪潮之巅(下册)

浪潮之巅(下册)

吴军 / 人民邮电出版社 / 2013-6 / 45.00元

《浪潮之巅(第2版)(下册)》不是一本科技产业发展历史集,而是在这个数字时代,一本IT人非读不可,而非IT人也应该阅读的作品。一个企业的发展与崛起,绝非只是空有领导强人即可达成。任何的决策、同期的商业环境,都在都影响着企业的兴衰。《浪潮之巅》不只是一本历史书,除了讲述科技顶尖企业的发展规律,对于华尔街如何左右科技公司,以及金融风暴对科技产业的冲击,也多有着墨。此外,《浪潮之巅》也着力讲述很多尚在普......一起来看看 《浪潮之巅(下册)》 这本书的介绍吧!

HTML 压缩/解压工具
HTML 压缩/解压工具

在线压缩/解压 HTML 代码

正则表达式在线测试
正则表达式在线测试

正则表达式在线测试

HSV CMYK 转换工具
HSV CMYK 转换工具

HSV CMYK互换工具