内容简介:注:本文仅为笔记。
注:本文仅为笔记。
极客时间 - 数据结构与算法之美 - 04 | 复杂度分析(下):浅析最好、最坏、平均、均摊时间复杂度
最好、最坏时间复杂度
略,比较容易分析。
平均时间复杂度
需考虑概率来计算。
概率论中的 加权平均值 ,也叫作 期望值 ,所以平均时间复杂度的全称应该叫 加权平均时间复杂度 或者 期望时间复杂度 。
均摊时间复杂度
均摊时间复杂度及对应的摊还分析法。
对一个数据结构进行一组连续操作中,大部分情况下时间复杂度都很低,只有个别情况下时间复杂度比较高,而且这些操作之间存在前后连贯的时序关系,这个时候,我们就可以将这一组操作放在一块儿分析,看是否能将较高时间复杂度那次操作的耗时,平摊到其他那些时间复杂度比较低的操作上。而且,在能够应用均摊时间复杂度分析的场合,一般均摊时间复杂度就等于最好情况时间复杂度。
// 全局变量,大小为 10 的数组 array,长度 len,下标 i。 int array[] = new int[10]; int len = 10; int i = 0; // 往数组中添加一个元素 void add(int element) { if (i >= len) { // 数组空间不够了 // 重新申请一个 2 倍大小的数组空间 int new_array[] = new int[len*2]; // 把原来 array 数组中的数据依次 copy 到 new_array for (int j = 0; j < len; ++j) { new_array[j] = array[j]; } // new_array 复制给 array,array 现在大小就是 2 倍 len 了 array = new_array; len = 2 * len; } // 将 element 放到下标为 i 的位置,下标 i 加一 array[i] = element; ++i; }
以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网
猜你喜欢:本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。