内容简介:来源:Medium编辑:小智
来源:Medium
编辑:小智
最近京东金融App被发现私自上传用户的银行app截图,被迫公开致歉。
京东app获取用户的资产信息的目的 之一 ,是想针对特定用户进行定制化的推荐。只不过这样的做法涉嫌侵犯用户隐私,存在极大的安全隐患。
通常来讲,像京东、淘宝、亚马逊、Netflix这样的电商公司,都需要掌握一定的用户隐私信息,从而能够让推荐系统做到投 用户之所好 。
早期简单的推荐系统,比如亚马逊、京东等,会根据用户购买的历史,推荐拥有类似标签的商品。
然而对于消费者来说,除非是需要重复购买的耗材类产品,否则很少会再去购买功能相似的商品,这样的推荐系统显然是远远不能满足购物需求的。
协同过滤是迄今为止最成功的推荐算法之一,广泛应用于电子商务、社交网络、影音阅读等涉及到信息检索的领域。
使用协同过滤将用户喜好抽象成数学问题
将个性化推荐抽象成一个逻辑清晰的数学问题,而不需要涉及到变幻莫测的心理学,极大的降低了推荐系统的设计成本,提高了鲁棒性。
协同过滤的原理,首先是找出和你喜好、订单等有交集的其他用户。比如你们的订单中,有80%以上的商品重合率,阅读过的书籍中有10本都标记了喜欢等等。
通过多个维度把用户进行分类,就可以使用同类的群体用户的数据,针对单个用户进行推荐。
协同过滤算法分为两类,基于用户(User-based)的协同过滤,和基于邻居的协同过滤(Neighbor-based Collaborative Filtering)。前者是人以类聚,后者是物以群分。
由此可见,协同过滤算法严重依赖两个因素:大量的有关用户喜好的历史数据,以及大量的单一产品的评价数据。
总之,数据越丰富,推荐越精准。但这对小样本数是非常不友好的,在冷启动的时候(比如新用户完全没有产生任何历史数据),该如何构建推荐系统呢?
常见的解决方案涉及分析元数据,或给新用户通过几个问题来了解他们的初始偏好。
协同过滤算法的实现方式
我们使用电影评分作为示例。根据用户对电影的分数构建一个用户表来对其进行可视化:
上表中,每行代表一个用户,每列代表一部电影。交叉引用揭示用户和电影评分之间的对应关系(满分为5分,0分表示“未观看”)。
我们的目标是预测出是否应该向没看过该电影、对应评分为0的用户,推荐这部电影。对应到表中,这个问题就转化为“预测用户会给电影打几分”。
在具体实现中,就是给分数为0的表格填上分数,这个分数就是预测的用户评分。如果分数高,就向用户推荐;不高就不推荐。
接下来我们设2个嵌入矩阵:用户矩阵W_u,和电影矩阵W_m。每个矩阵将用e维向量填充,e是数组的大小。
我们在两个矩阵中,使用完全随机数,得到两个随机的矩阵。两者相乘得到第三个完全随机的矩阵。
将这个矩阵和原始表进行对比,从而找到一个损失函数。这基本上是衡量预测评级与实际评级相差多远的指标。接着使用反向传播和梯度下降来优化两个矩阵以获得正确的值。
为什么可以通过冰冷的数学预测出我们的喜好?
上述构建的矩阵基本上是矢量堆栈。每个用户一个向量,每个电影一个向量。
每个向量表示对应的用户是什么类型的人。它将用户的喜好、想法和感受,联通希望和恐惧,封装成一个毫无情感的numpy.array[]数组。
为了更好地理解这一点,让我们放大一个特定的用户向量,假设e = 3:
这里,矢量的三个分量是[100, 0, 50] 。 每个组件代表用户的一些特征,机器通过查看ta之前的评级来学习。
假设这三个组件具有以下含义:
我们可以解读出,这个用户显然喜欢动作片,对浪漫电影不是很喜欢,也喜欢喜剧电影,但不像动作电影那么多。
这就是机器学习模型理解人类的复杂性的方式:将其嵌入到e维向量空间中,然后相乘。
e越大,捕获的用户数据就越多,计算所花费时间也就越长。
接着我们就可以再来使用基于邻居的算法,找出电影的属性,再去和用户喜好对比。
假设我们有一部电影m,它的矩阵是这样
解释成人话就是
所以m应该是一部浪漫喜剧电影,用户u可能就不会喜欢。
算法之美,人性之美
协同过滤将我们人类的情感感念,喜欢、讨厌、恐惧、激动等等,全部转化成一个个的毫无波澜的矢量矩阵。
两个矩阵只是简单的相乘,就能预测一个人的喜好,简直不可思议!在不知道的地方,我们都是同一线性向量空间的元素。
那个地方,有美。
查看英文原版:https://medium.freecodecamp.org/how-companies-use-collaborative-filtering-to-learn-exactly-what-you-want-a3fc58e22ad9
声明:本文来自新智元,版权归作者所有。文章内容仅代表作者独立观点,不代表安全内参立场,转载目的在于传递更多信息。如需转载,请联系原作者获取授权。
以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网
猜你喜欢:本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
Chinese Authoritarianism in the Information Age
Routledge / 2018-2-13 / GBP 115.00
This book examines information and public opinion control by the authoritarian state in response to popular access to information and upgraded political communication channels among the citizens in co......一起来看看 《Chinese Authoritarianism in the Information Age》 这本书的介绍吧!
CSS 压缩/解压工具
在线压缩/解压 CSS 代码
XML 在线格式化
在线 XML 格式化压缩工具