一套很专业的监控方案:HDFS监控落地背后的思考

栏目: 服务器 · 发布时间: 5年前

内容简介:基于京东云的实战经验,我们今天来聊聊HDFS相关的监控。Hadoop分布式文件系统(HDFS)被设计成适合运行在通用硬件(commodity hardware)上的分布式文件系统。HDFS能提供高吞吐量的数据访问,非常适合大规模数据集上的应用。在大数据生态圈中,HDFS是最重要的底层分布式文件系统,它的稳定性关乎整个生态系统的健康。

基于京东云的实战经验,我们今天来聊聊HDFS相关的监控。

Hadoop分布式文件系统(HDFS)被设计成适合运行在通用硬件(commodity hardware)上的分布式文件系统。

HDFS能提供高吞吐量的数据访问,非常适合大规模数据集上的应用。在大数据生态圈中,HDFS是最重要的底层分布式文件系统,它的稳定性关乎整个生态系统的健康。

本文介绍了HDFS相关的重要监控指标,分享指标背后的思考。

一、HDFS监控挑战

HDFS是Hadoop生态的一部分,监控方案不仅需适用HDFS,其他组件如Yarn、Hbase、Hive等,也需适用

HDFS API提供的指标较多,部分指标没必要实时采集,但故障时需能快速获取到

Hadoop相关组件的日志,比较重要,如问题定位、审计等

监控方案不仅能满足监控本身,故障定位涉及指标也应覆盖

二、Hadoop监控方案

Hadoop监控数据采集是通过HTTP API,或者JMX。实际中,用到比较多的产品主要有:CDH、Ambari,此外,还有部分工具,如Jmxtrans、HadoopExporter(用于Prometheus)。

CDH是一款开源的集部署、监控、操作等于一体的Hadoop生态组件管理工具,也提供收费版(比免费版多提供数据备份恢复、故障定位等特性)。CDH提供的HDFS监控界面在体验上是非常优秀的,是对HDFS监控指标深入发掘之后的浓缩,比如HDFS容量、读写流量及耗时、Datanode磁盘刷新耗时等。

一套很专业的监控方案:HDFS监控落地背后的思考

图1 CDH提供的HDFS监控界面

Ambari与CDH类似,同样是开源工具,但它的扩展性要比较好,另外,它的信息可以从机器、组件、集群等不同维度展现,接近运维工程师使用习惯。

一套很专业的监控方案:HDFS监控落地背后的思考

图2 Ambari提供的HDFS监控界面

如果使用CDH,或者Ambari进行HDFS监控,也存在实际问题:

  • 对应的Hadoop及相关组件版本不能自定义
  • 不能很好的满足大规模HDFS集群实际监控需求

其他工具,如Jmxtrans目前还不能很好适配Hadoop,因此,实际的监控方案选型为:

  • 采集:HadoopExporter,Hadoop HTTP API(说明:HDFS主要调用http://{domain}:{port}/jmx)
  • 日志:通过ELK来收集、分析
  • 存储:Prometheus
  • 展现:Grafana,HDFS UI,Hue
  • 告警:对接京东云告警系统

三、HDFS监控指标

1、主要指标概览

一套很专业的监控方案:HDFS监控落地背后的思考

表1 HDFS主要监控指标概览

2、黑盒监控指标

基本功能

文件整个生命周期中,是否存在功能异常,主要监控创建、查看、修改、删除动作。

查看时,需校对内容,有一种方式,可以在文件中写入时间戳,查看时校对时间戳,这样,可以根据时间差来判断是否写超时

切记保证生命周期完整,否则,大量监控产生的临时文件可能导致HDFS集群垮掉

3、白盒监控指标

1)错误

Block丢失数量

采集项:MissingBlocks

如果出现块丢失,则意味着文件已经损坏,所以需要在块丢失前,提前预判可能出现Block丢失风险(通过监控UnderReplicatedBlocks来判断)。

不可用数据节点占比

采集项:

一套很专业的监控方案:HDFS监控落地背后的思考

在BlockPlacementPolicyDefault.java中的isGoodTarget定义了选取Datanode节点策略,其中有两项是“节点是否在下线”、“是否有足够存储空间”,如果不可用数量过多,则可能导致选择不到健康的Datanode,因此,必须保证一定数量的健康Datanode。

一套很专业的监控方案:HDFS监控落地背后的思考

图4 选取可用Datanode时部分判断条件

错误日志关键字监控

部分常见错误监控(主要监控Exception/ERROR),对应关键字:

IOException、NoRouteToHostException、SafeModeException、UnknownHostException。

未复制Block数

采集项:UnderReplicatedBlocks

UnderReplicatedBlocks在数据节点下线、数据节点故障等均会产生大量正在同步的块数。

FGC监控

采集项:FGC

读写成功率

采集项:

monitor_write.status/monitor_read.status

根据Block实际读写流量汇聚计算,是对外SLA指标的重要依据。

数据盘故障

采集项:NumFailedVolumes

如果一个集群有1000台主机,每台主机是12块盘(一般存储型机器标准配置),那么这将会是1万2000块数据盘,按照机械盘平均季度故障率1.65%(数据存储服务商Backblaze统计)计算,平均每个月故障7块盘。若集群规模再扩大,那么运维工程师将耗费很大精力在故障盘处理与服务恢复上。很显然,一套自动化的数据盘故障检测、自动报修、服务自动恢复机制成为刚需。

除故障盘监控外,故障数据盘要有全局性解决方案。在实践中,以场景为维度,通过自助化的方式来实现对此问题处理。

一套很专业的监控方案:HDFS监控落地背后的思考

图5 基于场景实现的Jenkins自助化任务

2)流量

Block读、写次数

采集项:

一套很专业的监控方案:HDFS监控落地背后的思考

采集Datanode数据进行汇聚计算。

网络进出流量

采集项:node_network_receive_bytes_total/ node_network_transmit_bytes_total

没有直接可以使用的现成数据,需要通过ReceivedBytes(接收字节总量)、SentBytes(发送字节总量)来计算。

磁盘I/O

采集项:node_disk_written_bytes_total/ node_disk_read_bytes_total

3)延迟

RPC处理平均时间

采集项:RpcQueueTimeAvgTime

采集RpcQueueTimeAvgTime(RPC处理平均时间)、SyncsAvgTime(Journalnode同步耗时)。

慢节点数量

采集项:SlowPeerReports

慢节点主要特征是,落到该节点上的读、写较平均值差距较大,但给他足够时间,仍然能返回正确结果。通常导致慢节点出现的原因除机器硬件、网络外,对应节点上的负载较大是另一个主要原因。实际监控中,除监控节点上的读写耗时外,节点上的负载也需要重点监控。

根据实际需要,可以灵活调整Datanode汇报时间,或者开启“陈旧节点”(Stale Node)检测,以便Namenode准确识别故障实例。涉及部分配置项:

  • dfs.namenode.heartbeat.recheck-interval
  • dfs.heartbeat.interval
  • dfs.namenode.avoid.read.stale.datanode
  • dfs.namenode.avoid.write.stale.datanode
  • dfs.namenode.stale.datanode.interval

4)容量

集群总空间、空间使用率

采集项:PercentUsed

HDFS UI花费了很大篇幅来展现存储空间相关指标,足以说明它的重要性。

空间使用率计算包含了处于“下线中”节点空间,这是一个陷阱。如果有节点处于下线状态,但它们代表的空间仍计算在总空间,如果下线节点过多,存在这样“怪象”:集群剩余空间很多,但已无空间可写。

此外,在Datanode空间规划时,要预留一部分空间。HDFS预留空间有可能是其他程序使用,也有可能是文件删除后,但一直被引用,如果“Non DFS Used”一直增大,则需要追查具体原因并优化,可以通过如下参数来设置预留空间:

  • dfs.datanode.du.reserved.calculator
  • dfs.datanode.du.reserved
  • dfs.datanode.du.reserved.pct

作为HDFS运维开发人员,需清楚此公式:Configured Capacity = Total Disk Space - Reserved Space = Remaining Space + DFS Used + Non DFS Used。

Namenode堆内存使用率

采集项:

HeapMemoryUsage.used/HeapMemoryUsage.committed

如果将此指标作为HDFS核心指标,也是不为过的。元数据和Block映射关系占据了Namenode大部分堆内存,这也是HDFS不适合存储大量小文件的原因之一。堆内存使用过大,可能会出现Namenode启动慢,潜在FGC风险,因此,堆内存使用情况需重点监控。

实际中,堆内存使用率增加,不可避免,给出有效的几个方案:

  • 调整堆内存分配
  • 建立文件生命周期管理机制,及时清理部分无用文件
  • 小文件合并
  • 使用HDFS Federation横向扩展

尽管这些措施可以在很长时间内,有效降低风险,但提前规划好集群也是很有必要。

数据均衡度

采集项:

一套很专业的监控方案:HDFS监控落地背后的思考

HDFS而言,数据存储均衡度,一定程度上决定了它的安全性。实际中,根据各存储实例的空间使用率,来计算这组数据的标准差,用以反馈各实例之间的数据均衡程度。

数据较大情况下,如果进行数据均衡则会比较耗时,尽管通过调整并发度、速度也很难快速的完成数据均衡。针对这种情况,可以尝试优先下线空间已耗尽的实例,之后再扩容的方式来实现均衡的目的。

还有一点需注意,在3.0版本之前,数据均衡只能是节点之间的均衡,不能实现节点内部不同数据盘的均衡。

RPC请求队列的长度

采集项:CallQueueLength(RPC请求队列长度)。

文件数量

采集项:FilesTotal

与堆内存使用率配合使用。每个文件系统对象(包括文件、目录、Block数量)至少占有150字节堆内存,根据此,可以粗略预估出一个Namenode可以保存多少文件。根据文件与块数量之间的关系,也可以对块大小做一定优化。

下线实例数

采集项:NumDecommissioningDataNodes

HDFS集群规模较大时,实时掌握健康实例说,定期修复故障节点并及时上线,可以为公司节省一定成本。

5)其他

除上述主要指标外,服务器、进程JVM、依赖服务(Zookeeper、DNS)等通用监控策略也需添加。

四、HDFS监控落地

Grafana仪表盘展现:主要用于服务巡检、故障定位(说明:Grafana官方提供的HDFS监控模板,数据指标相对较少)。

一套很专业的监控方案:HDFS监控落地背后的思考

图6 HDFS部分集群Grafana仪表盘

ELK-Hadoop:主要用于全局日志检索,以及错误日志关键字监控。

一套很专业的监控方案:HDFS监控落地背后的思考

图7 ES中搜索HDFS集群日志

一套很专业的监控方案:HDFS监控落地背后的思考

图8 日志服务搜索HDFS集群日志

Hue、HDFS UI:主要用于HDFS问题排查与日常维护。

五、HDFS案例

案例1

DNS产生脏数据,导致Namenode HA故障。

  • 发现方式:功能监控、SLA指标异常
  • 故障原因:DNS服务器产生脏数据,致使Namenode主机名出错,在HA切换时,因找到错误主机而失败
  • 优化建议:DNS作为最基础服务,务必保证其数据正确与稳定,在一定规模情况下,切忌使用修改/etc/hosts方式来解决主机名问题,如果没有高可用的内部DNS服务,建议使用DNSMasq来搭建一套DNS服务器

案例2

机架分组不合理,导致HDFS无法写入。

  • 发现方式:功能监控写异常偶发性告警
  • 故障原因:HDFS开启机架感知,不同分组机器资源分配不合理,部分分组存储资源耗尽,在选择Datanode时,找不到可用节点
  • 优化建议:合理分配各机架上的实例数量,并分组进行监控。在规模较小情况下,可用考虑关闭机架感知功能

HDFS监控自定义任务:

https://github.com/cloud-op/monitor


以上就是本文的全部内容,希望本文的内容对大家的学习或者工作能带来一定的帮助,也希望大家多多支持 码农网

查看所有标签

猜你喜欢:

本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们

深入理解OpenCV

深入理解OpenCV

[巴西]Daniel Lelis Baggio / 刘波 / 机械工业出版社 / 2014-9 / 59

opencv是最常见的计算机视觉库之一,它提供了许多经过优化的复杂算法。本书对已掌握基本opencv技术同时想提高计算机视觉的实践经验的开发者来讲是一本非常好的书。每章都有一个单独的项目,其背景也在这些章节中进行了介绍。因此,读者可以依次学习这些项目,也可以直接跳到感兴趣的项目进行学习。 《深入理解opencv:实用计算机视觉项目解析》详细讲解9个实用的计算机视觉项目,通过本书的学习,读者可......一起来看看 《深入理解OpenCV》 这本书的介绍吧!

在线进制转换器
在线进制转换器

各进制数互转换器

Base64 编码/解码
Base64 编码/解码

Base64 编码/解码

正则表达式在线测试
正则表达式在线测试

正则表达式在线测试