内容简介:容器监控方案 cAdvisor + Elasticsearch
容器监控方案 cAdvisor + Elasticsearch
摘要:本文属于原创,欢迎转载,转载请保留出处: https://github.com/jasonGeng88/blog
当前环境
- docker 1.12.1
- centos 7
前言
什么是微服务?微服务带来的好处?想必大家都了解了很多。但在真正实践中,还是有各种各样的挑战。今天就想和大家分享一下,在服务容器化场景中的服务监控问题。
传统的服务监控,一般都是针对宿主机的,有对 CPU、内存、进程数、IO 等监控。这些指标做得非常全面,也能很好的反应宿主机的健康状况。可到了服务容器化的场景中,似乎变得有些力不从心。一台宿主机上会起 n 个容器,每个容器都会独立分配资源,如 CPU、内存等。如果还是仅仅针对宿主机做监控,效果可能不太理想。
我们的容器化部署采用的是 docker 技术,所以下面会针对 docker 来进行一系列的服务监控,以及将监控的数据集成进我们已有的日志中心(ELK)。
关于日志中心的搭建,有兴趣的可看我之前写过的一篇 “基于ELK+Filebeat搭建日志中心” 。
docker 容器监控
cAdvisor 介绍
关于 docker 的监控,我们这里采用的是由 Google 开源的的监控工具 cAdvisor 。采用它的主要原因有:
- 对 docker 容器提供了原生的支持;
- 开箱即用的特性,降低了部署的成本;
- 除了自身提供简单的可视化界面外,还提供了外部存储的扩展,如 ES(Elasticsearch)、kafka、InfluxDB等。
Google的cAdvisor(Container Advisor)“为容器用户提供了了解运行时容器资源使用和性能特征的方法”。cAdvisor的容器抽象基于Google的lmctfy容器栈,因此原生支持Docker容器并能够“开箱即用”地支持其他的容器类型。cAdvisor部署为一个运行中的daemon,它会收集、聚集、处理并导出运行中容器的信息。这些信息能够包含容器级别的资源隔离参数、资源的历史使用状况、反映资源使用和网络统计数据完整历史状况的柱状图。
cAdvisor 部署
由于 cAdvisor 本身也进行了容器化,所以部署极其简单。只需在运行有 docker-daemon 的宿主机上,运行如下命令:
docker run \ --volume=/:/rootfs:ro \ --volume=/var/run:/var/run:rw \ --volume=/sys:/sys:ro \ --volume=/var/lib/docker/:/var/lib/docker:ro \ --publish=8080:8080 \ --detach=true \ --name=cadvisor \ google/cadvisor:latest
cAdvisor 演示
它提供了简单的可视化界面,为我们提供了容器的整体情况,以及每个容器的独立数据,数据包括有 CPU、内存、网络IO、磁盘IO等使用情况。
cAdvisor 参数说明
上面的部署只是为了演示使用的,所以参数都使用的是缺省值。为了更好的运用 cAdvisor,有些参数我们还是需要了解的( 详细信息参考官方文档 ):
参数 | 默认值 | 说明 |
---|---|---|
-allow_dynamic_housekeeping | true | 设置数据采集的频率间隔是动态的,这取决于容器的活跃程度。若设为false,采集的时间间隔将和预期的保持一致,但这会增加资源的使用率。 |
-global_housekeeping_interval | 1m0s | 设置cAdvisor全局的采集行为的时间间隔,主要通过内核事件来发现新容器的产生。 |
-housekeeping_interval | 1s | 每个已发现的容器的数据采集频率。 |
-machine_id_file | /etc/machine-id,/var/lib/dbus/machine-id | 标识宿主机ID的文件地址,可以设置多个文件,当第一个不存在时,会依次向后查找,文件地址用逗号分隔 |
-storage_duration | 2m0s | 在内存中保存最近多久的历史数据 |
-storage_driver | Empty(none) | 设置采集的缓存数据将推送至的存储驱动,可选项有: , bigquery, ES, influxdb, kafka, redis, statsd, stdout。 |
cAdvisor 不足
从上述的参数列表中可以看出,cAdvisor 做到的是实时监控,数据存储在内存中,并且只会保存很短的一段时间。所以它是做不到监控数据的存储,换句话说,它是记录下近几天的监控数据。为此它提供了有关的存储驱动,帮助我们将实时数据传输到我们指定的数据存储器中。
其次,cAdvisor监听的是宿主机 docker 主进程的变化,这就意味着单单依靠它是做不到分布式的监控。所以,这更添加了我们将它与 ELK 做集成的理由。
与日志中心(ELK)集成
背景
为了降低维护成本,我们这里选择 ES 作为存储驱动,将 cAdvisor 与我们已有的 ELK 日志中心进行集成。这也降低了使用者的复杂度,通过同一个平台,解决了日志收集与服务监控的问题。
架构
从上图不难看出,cAdvisor 也是采用了协同进程的概念,通过监听 docker 主进程的事件,将采集到的数据远程传输的方式,push 到 ES 中。并且通过 Machine ID 来区分不同宿主机的容器信息,实现了数据的分布式监控。
cAdvisor 支持 ES 5
其实我们用它与 ES 集成的时候,还是略坑的。如果你用的 ES 是 5.0+,那就杯具了。因为 cAdvisor 官方目前仅对 ES 2 进行了支持。具体的情况可以查看官方 Github 下的讨论: https://github.com/google/cadvisor/pull/1597 。
这当然也体现了开源的力量。从上述的讨论中可以看出,对 ES 5 的支持已经有人提供了,也经过了测试验证,只是因为官方为了考虑兼容 ES 2,所以暂时没有采纳合并请求。但这给了我们解决方案,虽然官方不提供,我们可以根据社区提供的 ES 5 的代码,进行手动的 build 生成 cadvisor 执行文件。在以官方镜像启动容器时,将我们生成的 cadvisor 执行文件以文件挂载方式替换原有的执行文件,这就做到了对 ES 5的支持( 相信官方会很快对 ES 5 进行支持,我们也不用采用这种迂回的方式了 )。
为了避免自己在手动编译过程会出现一些问题,我这里也提供了 build 好的 cadvisor 执行文件,下载地址: https://github.com/jasonGeng88/cadvisor/releases/download/es5/cadvisor
部署
docker run \ --volume=/:/rootfs:ro \ --volume=/var/run:/var/run:rw \ --volume=/sys:/sys:ro \ --volume=/var/lib/docker/:/var/lib/docker:ro \ --volume=$YOUR_PATH/cadvisor:/usr/bin/cadvisor \ --publish=8080:8080 \ --detach=true \ --name=cadvisor \ google/cadvisor:latest \ -storage_driver=elasticsearch.v5 \ -storage_driver_es_index="cadvisor" \ -storage_driver_es_host="http://$ELASTICSEARCH_IP:9200"
展示( Demo数据 )
总结
本文介绍了微服务下的容器监控方案,从“开箱即用”的 cAdvisor 讲起,虽然它也能输出我们想要的监控数据。但是作为一个完整的应用,我们还要考虑它的可行性、易用性和可扩展性。同时要从实际出发,结合现有的框架体系,将 cAdvisor 融入进已有的 ELK 日志中心,并且对数据可以进行自定义的图表展示,使用上更灵活。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持 码农网
猜你喜欢:本站部分资源来源于网络,本站转载出于传递更多信息之目的,版权归原作者或者来源机构所有,如转载稿涉及版权问题,请联系我们。
C语言的科学和艺术
罗伯茨 / 翁惠玉 / 机械工业出版社 / 2005-3 / 55.00元
《C语言的科学和艺术》是计算机科学的经典教材,介绍了计算机科学的基础知识和程序设计的专门知识。《C语言的科学和艺术》以介绍ANSI C为主线,不仅涵盖C语言的基本知识,而且介绍了软件工程技术以及如何应用良好的程序设计风格进行开发等内容。《C语言的科学和艺术》采用了库函数的方法,强调抽象的原则,详细阐述了库和模块化开发。此外,《C语言的科学和艺术》还利用大量实例讲述解决问题的全过程,对开发过程中常见......一起来看看 《C语言的科学和艺术》 这本书的介绍吧!